Vibroacoustic Simulation. Alexander Peiffer
Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 38

Название: Vibroacoustic Simulation

Автор: Alexander Peiffer

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119849865

isbn:

СКАЧАТЬ EndFraction"/> (2.63)

      The wave equation for the velocity potential (2.30) becomes

       left-parenthesis StartFraction 1 Over c 0 squared EndFraction StartFraction partial-differential squared Over partial-differential t squared EndFraction minus StartFraction 2 Over r EndFraction StartFraction partial-differential Over partial-differential r EndFraction minus StartFraction partial-differential squared Over partial-differential r squared EndFraction right-parenthesis normal upper Phi equals 0 (2.64)

      The two right terms can be written in a different form using rΦ as argument

       left-parenthesis StartFraction 1 Over c 0 squared EndFraction StartFraction partial-differential squared Over partial-differential t squared EndFraction minus StartFraction 1 Over r EndFraction StartFraction partial-differential squared Over partial-differential r squared EndFraction right-parenthesis left-parenthesis r normal upper Phi right-parenthesis equals 0 period (2.65)

      Equation (2.30) is the one-dimensional wave equation for the argument rΦ, so we can use the D’Alambert solution

      The first term represents an outgoing wave travelling away from the source, the second an incoming wave travelling to the source. As we are interested in sound being emitted from the source we consider the outgoing harmonic solution with complex amplitude A

      Consider a pulsating sphere of radius R in the centre with normal surface velocity vR. With the velocity potential the radial velocity can be easily derived from the solution (2.67):

      Substituting Equation (2.67) into (2.68) and solving for A gives

       bold-italic upper A equals minus bold-italic v Subscript upper R Baseline StartFraction upper R squared Over 1 minus j k upper R EndFraction e Superscript j k a (2.69)

      Hence,

       normal upper Phi left-parenthesis r comma t right-parenthesis equals minus StartFraction bold-italic v Subscript upper R Baseline Over r EndFraction StartFraction upper R squared Over 1 minus j k upper R EndFraction e Superscript j left-bracket omega t minus k left-parenthesis r minus upper R right-parenthesis right-bracket (2.70)

      The strength Q(t) of the source is defined by the volume flow rate. This is the surface of the sphere times normal velocity vR

       upper Q left-parenthesis t right-parenthesis equals ModifyingAbove upper V With dot equals 4 pi upper R squared v Subscript upper R Baseline left-parenthesis t right-parenthesis (2.71)

      With the harmonic source strength

       StartLayout 1st Row 1st Column bold-italic upper Q left-parenthesis t right-parenthesis 2nd Column equals 4 pi upper R squared bold-italic v Subscript upper R Baseline e Superscript j omega t Baseline 3rd Column bold-italic upper Q left-parenthesis omega right-parenthesis 4th Column equals 4 pi upper R squared bold-italic v Subscript upper R EndLayout (2.72)

      the spherical wave solution is

      and

       bold-italic v Subscript r Baseline left-parenthesis r comma omega right-parenthesis equals minus left-parenthesis StartFraction 1 plus j k r Over r EndFraction right-parenthesis normal upper Phi equals StartFraction bold-italic upper Q left-parenthesis omega right-parenthesis Over 4 pi r squared EndFraction left-parenthesis StartFraction 1 plus j k r Over 1 plus j k upper R EndFraction right-parenthesis e Superscript minus j k left-parenthesis r minus upper R right-parenthesis (2.75)

      2.4.1.1 Field Properties of Spherical Waves

      The acoustic impedance z is according to Equation (2.38)

      In contrast to the plane wave, the specific acoustic impedance is not real. It contains a resistive and a reactive part. When the resistive part is dominant the pressure is in phase with the velocity. When the reactive part dominates, the velocity is out of phase to the pressure. The out of phase component does not generate any power in the sound field as it was the case for moving a mass or driving a spring. The motion is partly introduced into the local kinetic energy, and this part can be recovered as it is the case for an oscillating mass. СКАЧАТЬ