Vibroacoustic Simulation. Alexander Peiffer
Чтение книги онлайн.

Читать онлайн книгу Vibroacoustic Simulation - Alexander Peiffer страница 32

Название: Vibroacoustic Simulation

Автор: Alexander Peiffer

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119849865

isbn:

СКАЧАТЬ 1980. ISBN 978-0-471-05887-8.

      2 Cyril M. Harris and Charles E. Crede. Shock and Vibration Handbook. McGraw-Hill, New York, NY, U.S.A., second edition, 1976. ISBN 0-07-026799-5.

      3 P. A. Nelson and S. J. Elliott. Active Control of Sound. Academic, London, 1993. ISBN 0-12-515426-7.

      Notes

      1 1 In this book the convention ejωt for the complex harmonic function is used. Literature that deals with wave propagation often use e−jωt to have positive wavenumber for positive wave propagation. However, as in every textbook in acoustics I denote the used convention on the first page to avoid confusion.

      2.1 Introduction

      The acoustic wave motion is described by the equations of aerodynamics that are linearized because of the small fluctuations that occur in acoustic waves compared to the static state variables. The fluid motion is described generally by three equations:

       Continuity equation – conservation of mass

       Newton’s law – conservation of momentum

       State law – pressure volume relationship.

      For lumped systems the velocity is simply the time derivative of the point mass position in space. The same approach can be used in fluid dynamics, but here the continuous fluid is subdivided into several cells and their movement is described by trajectories. This is called the Lagrange description of fluid dynamics. Even if the equation of motions are simpler in that formulation it is quite complicated to follow all coordinates of fluid volumes in a complex flow. Thus, the Euler description of fluid dynamics is used. In this description the conservation equations are performed for a control volume that is fixed in space and the flow passes through this volume.

      In this chapter, the three dimensional space is given by the Cartesian coordinates x={x,y,z}T and the velocity of the fluid v={ vx, vy, vz }T.

      2.2 Wave Equation for Fluids

      2.2.1 Conservation of Mass

      1 The elemental mass m=ρdV=ρA with A=dydz.

      2 Mass flow into the volume (ρvxA)x.

      3 Mass flow out of the volume (ρvxA)x+dx.

      4 Mass input from external sources m˙.

      leading to equation

       StartFraction partial-differential left-parenthesis rho upper A d x right-parenthesis Over partial-differential t EndFraction equals left-parenthesis rho v Subscript normal x Baseline upper A right-parenthesis Subscript x Baseline minus left-parenthesis rho v Subscript normal x Baseline upper A right-parenthesis Subscript x plus d x Baseline plus ModifyingAbove m With dot (2.1)

      for mass conservation. Expanding the second term on the right hand side in a Taylor series gives

StartFraction partial-differential left-parenthesis rho upper A d x right-parenthesis Over partial-differential t EndFraction equals left-bracket left-parenthesis rho v Subscript normal x Baseline upper A right-parenthesis Subscript x Baseline minus left-parenthesis rho v Subscript normal x Baseline upper A right-parenthesis Subscript x Baseline minus StartFraction partial-differential left-parenthesis rho v Subscript normal x Baseline upper A right-parenthesis Subscript x Baseline Over partial-differential x EndFraction d x right-bracket plus ModifyingAbove m With dot

      and finally

      This one dimensional equation of mass conservation in x-direction can be extended to three dimensions:

      The second term of (2.3) may be confusing, but it says that the change of density is not only determined by a gradient in the velocity field but also by a gradient of the density.

      2.2.2 Newton’s law – Conservation of Momentum

      1 The momentum of the control volume is ρvxdV=ρvxAdx.

      2 The momentum flow into the volume (ρvx2A)x.

      3 mass flow out of the volume (ρvx2A)x+dx.

      4 The force at position x is (PA)x.

      5 The force at position x+dx is (PA)x+dx.

      6 External volume force density fx.

      Thus, the conservation of momentum in x reads

       StartFraction partial-differential left-parenthesis rho v Subscript normal x Baseline upper A d x right-parenthesis Over partial-differential t EndFraction equals left-parenthesis rho v Subscript normal x Superscript 2 Baseline upper A right-parenthesis Subscript x Baseline minus left-parenthesis rho v Subscript normal x Superscript 2 Baseline upper A right-parenthesis Subscript x plus d x Baseline plus left-parenthesis upper P upper A right-parenthesis Subscript x Baseline minus left-parenthesis upper P upper A right-parenthesis Subscript x plus d x Baseline plus upper F Subscript x (2.4)

      Using Taylor expansions for (ρvx2A)x+dx and (PA)x+dx gives

       StartFraction partial-differential left-parenthesis rho v Subscript normal x Baseline right-parenthesis Over partial-differential 
              <a href=СКАЧАТЬ