Green Internet of Things and Machine Learning. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Green Internet of Things and Machine Learning - Группа авторов страница 16

Название: Green Internet of Things and Machine Learning

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119793120

isbn:

СКАЧАТЬ data compression models. J. Mach. Learn. Res., 7, 2673–2698, 2006.

      12. Kaur, H., Singh, G., Minhas, J., A Review of Machine Learning based Anomaly Detection Techniques., Int. J. Comput. App. Technol. Res., 2, 2, 2(2), 185–187, 2013.

      13. Gao, J. and Jamidar, R., Machine Learning Applications for Data Center Optimization, Google, 2014. Retrieve: https://docs.google.com/a/google.com/viewer?rl=www.google.com/about/datacenters/efficiency/internal/assets/machine-learning-applicationsfor-datacenter-optimization-finalv2.pdf

      14. Haider, P., Chiarandini, L., Brefeld, U., Discriminative clustering for market segmentation. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2012.

      15. Kononenko, I., Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med., 23, 1, 23(1), 89–109, 2001.

      16. Sadjadi, S.O. and Hansen, J.H.L., Unsupervised Speech Activity Detection Using Voicing Measures and Perceptual Spectral Flux. IEEE Signal Proc. Let., 20, 3, March 2013.

      17. Hwang, K.E., Cho, D. Y., Park, S.W., Kim, S.D., Zhan, B. T., Applying machine learning techniques to analysis of gene expression data: cancer diagnosis, Methods of Microarray Data Analysis, Kluwer Academic Publishers, Springer US, pp. 167–182, 2002.

      18. Pang, B., Lee, L., Vaithyanathan, S., Thumbs up?: sentiment classification using machine learning techniques. Proceedings of the ACL-02 conference on Empirical methods in natural language processing, vol. 10, Association for Computational Linguistics, 2002.

      19. Horvitz, E.J., Apacible, J., Sarin, R., Liao, L., Prediction, Expectation, and Surprise: Methods, Designs, and Study of a Deployed Traffic Forecasting Service. Microsoft Research, 2012. Retrieve: https://www.microsoft.com/en-us/research/wp-content/uploads/2014/06/horvitz_traffic_uai2005.pdf

      20. Clarke, B., Fokoue, E., Zhang, H.H., Principles and theory for data mining and machine learning, Springer Series in Statistics, Springer Verlag New York, 2009.

      21. Mowry, M., A Survey of RFID in the medical industry with emphasis on applications to surgery and surgical devices. MAE188, Introduction to RFID, Dr. Rajit Gadh, UCLA, p. 22, Jun. 9, 2008. Retrieve: https://silo.tips/download/a-survey-of-rfid-in-the-medical-industry-contents#

      22. Namboodiri, V. and Gao, L., Energy-aware tag anti-collision protocols for RFID systems. IEEE Trans. Mob. Comput., 9, 1, 44–59, 2010.

      23. Xu, X., Gu, L., Wang, J., Xing, G., Cheung, S., Read more with less: An adaptive approach to energy-efficient RFID systems. IEEE J. Sel. Areas Commun., 29, 8, 1684–1697, 2011.

      24. Li, T., Wu, S., Chen, S., Yang, M., Generalized energy-efficient algorithms for the RFID estimation problem. IEEE ACM Trans. Netw., 20, 6, 1978–1990, 2012.

      25. Amin, Y., Printable green RFID antennas for embedded sensors. PhD dissertation, KTH School of Information and Communication Technology, Kista, Sweden, 2013.

      26. Lee, C., Kim, D., Kim, J., An energy efficient active RFID protocol to avoid over heading problem. IEEE Sens. J., 14, 1, 15–24, 2014.

      27. Shaikh, F., Zeadally, S., Exposito, E., Enabling Technologies for GreenInternet of Things. IEEE Syst. J., 11, 2, 983–994, 2017.

      28. Minerva, R., Biru, A., Rotondi, D., Towards a definitionof the Internet of Things (IoT), IEEE Internet initiative, Telecom Italia S.P.A., May 2015.

      29. Atzori, L., Iera, A., Morabito, G., The Internet of Things: A survey. Comput. Network, Elsevier, 54, 15, 2787–2805, Oct. 2010.

      30. López, T.S. et al., Adding sense to the IOT-An architecture framework for smart object systems. Pers. Ubiquit. Comput., 16, 3, 291–308, Mar. 2012.

      31. Gershenfeld, N., Krikorian, R., Cohen, D., The Internet of Things. Sci. Am., 291, 4, 76–81, 2004.

      32. Murugesan, S., Harnessing green IT: Principles and practices. IEEE IT Prof., 10, 1, 24–33, Jan.-Feb. 2008.

      33. Xu, L.D., He, W., Li, S., Internet of Things in industries: A survey. IEEE Trans. Ind. Inf., 10, 4, 2233–2243, Nov. 2014.

      34. Perera, C., Liu, C.H., Jayawardena, S., The Emerging Internet of Things Marketplace From an Industrial Perspective: A Survey. IEEE Trans. Emerg. Topics Comput., 3, 4, 2015.

      35. Zhu, C., Leung, V.C.M., Shu, L., Ngai, E.C.-H., Green Internet of Things for Smart World. IEEE Access, 3, 2151–2162, 2015.

      36. Rose, K., Eldridge, S., Chapin, L., The Internet of Things (IoT): An Overview, Understanding the issues of more connected world, Karen Rose, Scott Eldridge, Lyman Chapin, Internet Society, 2015.

      37. Gershenfeld, N., Krikorian, R., Cohen, D., The Internet of Things. Sci. Am., 291, 4, 76–81, 2004.

      38. Rawashdeh, S., Eyadat, W., Magableh, A., Mardini, W., Yasin, M.B., Sustainable Smart World. 10th International Conference on Information and Communication Systems (ICICS), 2019.

      39. Albreem, M.A.M., El-Saleh, A.A., Isa, M., Salah, W., Jusoh, M., Azizan, M.M., Ali, A., Green internet of things (IoT): An overview. IEEE 4th International Conference on Smart Instrumentation, Measurement and Application (ICSIMA), 2017.

      40. Poongodi, T., Ramya, S.R., Suresh, P., Balusamy, B., Application of IoT in Green Computing, Advances in Greener Energy Technologies, Springer Singapore, 2020.

      41. Lohan, V. and Singh, R.P., Research challenges for Internet of Things: A review. International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), 2017.

      42. Haldorai, A., Ramu, A., Murugan, S., Computing and Communication Systems in Urban Development, Urban Computing, Springer Nature Switzerland AG, 2019.

      43. Mohana Sundaram, K., Hussain, A., Sanjeevikumar, P., Holm-Nielsen, J.B., Kaliappan, V.K., Kavya Santhoshi, B., Deep Learning for Fault Diagnostics in Bearings, Insulators, PV Panels, Power Lines, and Electric Vehicle Applications—The State-of-the-Art Approaches. IEEE Access, 9, 4124641260, 2021.

      1 * Corresponding author: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со СКАЧАТЬ