Название: Green Internet of Things and Machine Learning
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Программы
isbn: 9781119793120
isbn:
G-IoT not only designates green atmosphere but also protects energy and time. It provides an efficient resolution that permits green and ecological development of the culture. It includes revolutions and applications for addressing community challenges like smart ecological city, smart transport, and proficient depletion of energy, to create a G-IoT atmosphere. IoT results can be examined online, and user can trace those data online.
1.8 Green IoT–Based Technologies
IoT comprises of six components that are identification, communication technologies, sensing, services, computation, and semantic.
1.8.1 Identification
Identification is the process which comprises of labeling, coding, identifying, resolution, transmission, and application of the objects or things in IoT. For orderly management, things identification is a primary requirement. This may be information given by a wearable device, an appliance, or a group of devices.
1.8.2 Sensing
Sensing is the name of activity where data is collected from various objects and it is sent to a data center, database, data warehouse, etc. According to the required services, this stored data is analyzed further and specific operations are performed. There can be various sensors such as temperature sensors, humidity sensors, mobile phones, and wearable sensing devices. Specific sensors are used as per the required service. Hence, sensing is categorized into environmental, biometric, biological, audible or visual, or all the above.
1.8.3 Communication Technologies
Communication technologies are used to connect various components to provide specific services. It uses either wide area network (WAN) communications or Wi-Fi (wireless LAN-based communications), Bluetooth, Z-wave, Near Field Communication (NFC), LTE Advanced, Wi-Fi, ultra wide bandwidth (UWB), IEEE 802.15.4, etc., which are the protocols used by IoT for communication [29].
1.8.4 Computation
Computation is the stage which is performed by the various hardware processing units such as microprocessors, microcontrollers, field programmable gate arrays (FPGAs), system on chips (SoCs), and software applications. To perform the computation, various hardware platforms such as Raspberry PI, Arduino, Intel Galileo, UDOO, Friendly ARM, and Gadgeteer are available, and many software platforms like LiteOS, TinyOS, and Riot OS are used. The important computational component of IoT is the Cloud platform. Since cloud platform has the high capability of computation in order to extract the valuable information from the stored data. Now, the transmission of this stored data takes place to a cloud-based service where other information that arrives from the IoT device is collected along with the cloud-based data in order to yield vital information to the end-user [30]. The data is gathered from the internet and other similar devices connected to the IoT. A process called “Data Processing” is required to extract vital information from the data.
1.8.5 Services
Services of IoT are broadly divided into below classes:
• Identity-related services
• Information aggregation services
• Collaborative-aware services
• Global services
Identity-related services are the foundation for all other services because identification of the object is the primary step for translating the real-world objects to the virtual world.
As the name describes, information aggregation service is used to accumulate the data from various sources. This data is then summarized and processed in order to gain fruitful results. This analyzed information is nowadays helping in making decisions and predictions. Global services denote the services provided to anyone on the demand, anywhere and anytime.
1.8.6 Semantic
Semantic is the name of task where knowledge is extracted intelligently from the mass of data to yield the demanded services. This is done by discovering resources, utilization of resources, modeling information, recognition, and analyzing data. Web ontology language (OWL), efficient XML interchange (EXI), resource description framework (RDF), etc., are the most common semantic technologies.
Figure 1.6 Life cycle of Green IoT.
1.9 Life Cycle of Green IoT
There is huge growth in IoT and its components in upcoming time. Therefore, it is needed to mitigate the number of resources to implement the logic and the reduction of energy as well to keep the things working for longer time. G-IoT relies on the optimum energy consumption.
For the smooth functioning of smart world, IoT should consume less energy and should reduce the green house effects at the same time. It has to focus on to mitigate the emission of CO2 from the devices and sensors [31].
Figure 1.6 represents the life cycle of G-IoT. It has four phases; they are green design, green production, green utilization, and green disposal/ recycle. Here, green disposal means the disposal should be in such a way that there should be no adverse effect on environment. Figure 1.6 depicts the life cycle of G-IoT.
1.10 Applications
In this section, we will discuss the various application based on G-IoT. Figure 1.7 depicts some applications, those that are based on G-IoT.
1.10.1 Industrial Automation
1.10.1.1 Machine to Machine Communications
Automation can be achieved through RFID tags. Without any sort of human intervention, direct communication is made by RFID to the robot [32].
1.10.1.2 Plant Monitoring
IoT СКАЧАТЬ