Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 30

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ rel="nofollow" href="#fb3_img_img_47d773ee-94fb-58f8-ad89-6ff109818b12.png" alt="bold upper F script upper J Subscript script l Baseline equals Start 1 By 4 Matrix 1st Row 1st Column bold upper B 2nd Column bold 0 3rd Column midline-horizontal-ellipsis 4th Column bold 0 EndMatrix comma"/>

      Theorem 3.1 There exists a matrix that satisfies (3.45), if and only if

      In order to satisfy condition (3.45), matrix bold upper F must be in the left nullspace of the last script l times n Subscript u columns of script upper J Subscript script l given by StartBinomialOrMatrix bold 0 Choose script upper J Subscript script l minus 1 EndBinomialOrMatrix. Let bold upper N overbar be a matrix whose rows form a basis for the left nullspace of script upper J Subscript script l minus 1:

      (3.48)bold upper N overbar script upper J Subscript script l minus 1 Baseline equals bold 0 comma

      then we have:

      (3.49)Start 2 By 2 Matrix 1st Row 1st Column bold upper I Subscript n Sub Subscript y Subscript Baseline 2nd Column bold 0 2nd Row 1st Column bold 0 2nd Column bold upper N overbar EndMatrix StartBinomialOrMatrix bold 0 Choose script upper J Subscript script l minus 1 Baseline EndBinomialOrMatrix equals bold 0 period

      Let us define:

      (3.50)bold upper N equals bold upper W Start 2 By 2 Matrix 1st Row 1st Column bold upper I Subscript n Sub Subscript y Subscript Baseline 2nd Column bold 0 2nd Row 1st Column bold 0 2nd Column bold upper N overbar EndMatrix comma

      where bold upper W is an invertible matrix. Then, we have:

      (3.51)bold upper N StartBinomialOrMatrix bold 0 Choose script upper J Subscript script l minus 1 Baseline EndBinomialOrMatrix equals bold 0 period

      To choose bold upper W, note that:

      (3.52)StartLayout 1st Row 1st Column bold upper N script upper J Subscript script l 2nd Column equals bold upper N Start 2 By 2 Matrix 1st Row 1st Column bold upper D 2nd Column bold 0 2nd Row 1st Column script upper O Subscript script l minus 1 Baseline bold upper B 2nd Column script upper J Subscript script l minus 1 Baseline EndMatrix 2nd Row 1st Column Blank 2nd Column equals bold upper W Start 2 By 2 Matrix 1st Row 1st Column bold upper D 2nd Column bold 0 2nd Row 1st Column bold upper N overbar script upper O Subscript script l minus 1 Baseline bold upper B 2nd Column bold 0 EndMatrix period EndLayout

      (3.53)bold upper N script upper J Subscript script l Baseline equals Start 2 By 2 Matrix 1st Row 1st Column bold 0 2nd Column bold 0 2nd Row 1st Column bold upper I Subscript n Sub Subscript u Subscript Baseline 2nd Column bold 0 EndMatrix period

      Regarding (3.45), bold upper F can be expressed as:

      (3.54)StartLayout 1st Row 1st Column bold upper F 2nd Column equals ModifyingAbove bold upper F With Ì‚ bold upper N 2nd Row 1st Column Blank 2nd Column equals Start 1 By 2 Matrix 1st Row 1st Column ModifyingAbove bold upper F With Ì‚ Subscript 1 Baseline 2nd Column ModifyingAbove bold upper F With Ì‚ Subscript 2 Baseline EndMatrix bold upper N comma EndLayout

      where ModifyingAbove bold upper F With Ì‚ Subscript 2 has n Subscript y columns. Then, equation (3.45) СКАЧАТЬ