Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 26

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ x Superscript minus 2 Baseline left-parenthesis bold x Subscript k minus n Sub Subscript x Subscript plus 2 Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 2 colon k Baseline right-parenthesis right-parenthesis 3rd Row vertical-ellipsis 4th Row bold g left-parenthesis bold upper F squared left-parenthesis bold x Subscript k minus 2 Baseline comma bold u Subscript k minus 2 colon k Baseline right-parenthesis right-parenthesis 5th Row bold g left-parenthesis bold upper F left-parenthesis bold x Subscript k minus 1 Baseline comma bold u Subscript k minus 1 colon k Baseline right-parenthesis right-parenthesis 6th Row bold g left-parenthesis bold x Subscript k Baseline comma bold u Subscript k Baseline right-parenthesis EndMatrix period"/>

      Defining

      (3.13)bold z Subscript k minus n Sub Subscript x Subscript plus i vertical-bar k Baseline equals bold upper F Superscript i minus 1 Baseline left-parenthesis bold z Subscript k minus n Sub Subscript x Subscript plus 1 vertical-bar k Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus i minus 1 colon i minus 1 Baseline right-parenthesis comma

      (3.14)StartLayout 1st Row 1st Column bold z Subscript k minus n Sub Subscript x Subscript plus 2 vertical-bar k plus 1 Baseline equals 2nd Column bold z Subscript k minus n Sub Subscript x Subscript plus 2 vertical-bar k Baseline plus script upper O Superscript negative 1 Baseline left-parenthesis bold z Subscript k minus n Sub Subscript x Subscript plus 1 vertical-bar k Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k minus 1 Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column times left-parenthesis bold upper B left-parenthesis bold y Subscript k plus 1 Baseline minus bold g left-parenthesis bold z Subscript k plus 1 vertical-bar k Baseline right-parenthesis right-parenthesis plus bold upper L left-parenthesis bold y Subscript k minus n Sub Subscript x Subscript plus 1 Baseline minus bold g left-parenthesis bold z Subscript k minus n Sub Subscript x Subscript plus 1 vertical-bar k Baseline right-parenthesis right-parenthesis right-parenthesis comma EndLayout

      (3.15)StartLayout 1st Row 1st Column ModifyingAbove x With caret Subscript k vertical-bar k Baseline equals 2nd Column bold upper F Superscript n Super Subscript x Superscript minus 1 Baseline left-parenthesis bold z Subscript k minus n Sub Subscript x Subscript plus 1 vertical-bar k Baseline comma bold u Subscript k minus n Sub Subscript x Subscript plus 1 colon k Baseline right-parenthesis comma EndLayout

      where bold upper L is the observer gain, bold upper B equals left-bracket 1 0 midline-horizontal-ellipsis 0 right-bracket Superscript upper T, and script upper O is the discrete nonlinear observability matrix, which is computed at sample time k as:

      (3.16)script upper O left-parenthesis bold x comma bold u Subscript k minus n Sub Subscript x Subscript plus 2 colon k Baseline right-parenthesis equals StartFraction partial-differential bold upper Phi left-parenthesis bold x comma bold u Subscript k minus n Sub Subscript x Subscript plus 2 colon k Baseline right-parenthesis Over partial-differential bold x EndFraction period

      The observer gain is determined in a way to guarantee local stability of the perturbed linear system for the reconstruction error in bold z:

      (3.17)bold e Subscript k minus n Sub Subscript x Subscript plus 2 vertical-bar k plus 1 Baseline equals left-parenthesis bold upper A minus bold upper L bold upper C right-parenthesis bold e Subscript k minus n Sub Subscript x Subscript plus 1 vertical-bar k Baseline plus upper O left-parenthesis parallel-to bold e Subscript k minus n Sub Subscript x Subscript plus 1 vertical-bar k Baseline parallel-to right-parenthesis comma

      where bold upper C equals Start 1 By 4 Matrix 1st Row 1st Column 0 2nd Column midline-horizontal-ellipsis 3rd Column 0 4th Column 1 EndMatrix and

bold upper A equals Start 5 By 5 Matrix 1st Row 1st Column 0 2nd Column 0 3rd Column midline-horizontal-ellipsis 4th Column 0 5th Column 0 2nd Row 1st Column 1 2nd Column 0 3rd Column midline-horizontal-ellipsis 4th Column 0 5th Column 0 3rd Row 1st Column 0 2nd Column 1 3rd Column midline-horizontal-ellipsis 4th Column 0 5th Column 0 4th Row 1st Column vertical-ellipsis 2nd Column vertical-ellipsis 3rd Column down-right-diagonal-ellipsis 4th Column vertical-ellipsis 5th Column vertical-ellipsis 5th Row 1st Column 0 2nd Column 0 3rd Column midline-horizontal-ellipsis 4th Column 1 5th Column 0 EndMatrix period

      This approach for designing nonlinear observers is applicable to systems that are observable for every bounded input, parallel-to bold u Subscript k Baseline parallel-to less-than-or-equal-to upper M, with bold g left-parenthesis bold x comma period right-parenthesis and bold upper F Superscript n Baseline left-parenthesis bold upper Phi Superscript negative 1 Baseline left-parenthesis bold x comma period right-parenthesis right-parenthesis being uniformly Lipschitz continuous functions of the state:

      (3.18)sup Underscript parallel-to bold u Subscript k Baseline parallel-to less-than-or-equal-to upper M Endscripts parallel-to bold g left-parenthesis bold x 1 comma period right-parenthesis minus bold g left-parenthesis bold x 2 comma period right-parenthesis parallel-to less-than-or-equal-to upper L 1 parallel-to bold x 1 minus bold x 2 parallel-to comma

      (3.19)sup Underscript parallel-to bold u Subscript k Baseline parallel-to less-than-or-equal-to upper M Endscripts parallel-to bold upper F Superscript n Baseline left-parenthesis bold upper Phi Superscript negative 1 Baseline left-parenthesis bold x 1 comma period right-parenthesis right-parenthesis minus bold upper F Superscript n Baseline left-parenthesis bold upper Phi Superscript negative 1 Baseline left-parenthesis bold x 2 comma period right-parenthesis right-parenthesis parallel-to less-than-or-equal-to upper L 2 parallel-to bold x 1 minus bold x 2 parallel-to comma

      where upper L 1 and upper L 2 denote the corresponding Lipschitz constants. However, convergence is guaranteed only for a neighborhood around the true state [36].

      The equivalent control approach allows for designing the discrete‐time sliding‐mode realization of a reduced‐order asymptotic observer [37]. Let us consider the following discrete‐time state‐space model: