Nonlinear Filters. Simon Haykin
Чтение книги онлайн.

Читать онлайн книгу Nonlinear Filters - Simon Haykin страница 32

Название: Nonlinear Filters

Автор: Simon Haykin

Издательство: John Wiley & Sons Limited

Жанр: Программы

Серия:

isbn: 9781119078159

isbn:

СКАЧАТЬ dependent on the event of interest. Moreover, the Bayesian method allows us to iteratively update probability of the state when new measurements become available [45]. This chapter reviews the Bayesian paradigm and presents the formulation of the optimal nonlinear filtering problem.

      (4.1)upper P left-parenthesis upper A vertical-bar upper B right-parenthesis equals StartFraction upper P left-parenthesis upper B vertical-bar upper A right-parenthesis upper P left-parenthesis upper A right-parenthesis Over upper P left-parenthesis upper B right-parenthesis EndFraction period

      Considering two random variables bold x and bold y with conditional distribution p left-parenthesis bold x vertical-bar bold y right-parenthesis and marginal distribution p left-parenthesis bold y), the continuous version of Bayes' rule is as follows:

      (4.2)p left-parenthesis bold x vertical-bar bold y right-parenthesis equals StartFraction p left-parenthesis bold y vertical-bar bold x right-parenthesis p left-parenthesis bold x right-parenthesis Over integral p left-parenthesis bold y vertical-bar bold x right-parenthesis p left-parenthesis bold x right-parenthesis normal d bold x EndFraction comma

      where p left-parenthesis bold x right-parenthesis is the prior distribution, p left-parenthesis bold x vertical-bar bold y right-parenthesis is the posterior distribution, and p left-parenthesis bold y vertical-bar bold x right-parenthesis is the likelihood function, which is also denoted by script l left-parenthesis bold x vertical-bar bold y right-parenthesis. This formula captures the essence of Bayesian statistical modeling, where bold y denotes observations, and bold x represents states or parameters. In order to build a Bayesian model, we need a parametric statistical model described by the likelihood function script l left-parenthesis bold x vertical-bar bold y right-parenthesis. Furthermore, we need to incorporate our knowledge about the system under study and the uncertainty about this information, which is represented by the prior distribution p left-parenthesis bold x right-parenthesis [44].

      The following discrete‐time stochastic state‐space model describes the behavior of a discrete‐time nonlinear system:

      (4.6)p left-parenthesis bold y Subscript k Baseline vertical-bar bold x Subscript k Baseline comma bold u Subscript k Baseline right-parenthesis period

      The input sequence and the available measurement sequence at time instant k are denoted by bold upper U Subscript k Baseline equals left-brace bold u Subscript i Baseline vertical-bar i equals 0 comma ellipsis comma k right-brace identical-to bold u Subscript 0 colon k and bold upper Y Subscript k Baseline equals left-brace bold y Subscript i Baseline vertical-bar i equals 0 comma ellipsis comma k right-brace identical-to bold y Subscript 0 colon k, respectively. These two sequences form the СКАЧАТЬ