Computational Modeling and Simulation Examples in Bioengineering. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Computational Modeling and Simulation Examples in Bioengineering - Группа авторов страница 18

СКАЧАТЬ of the rupture locations of an abdominal aortic aneurysm. J. Endovasc. Ther. 16: 322–335.

      19 19 Doyle, B.J., Grace, P.A., Kavanagh, E.G. et al. (2009). Improved assessment and treatment of abdominal aortic aneurysms: the use of 3D reconstructions as a surgical guidance tool in endovascular repair. Ir. J. Med. Sci. 178: 321–328.

      20 20 Biasetti, J. and Gasser, T.C. (2012). A fluido‐chemical model to predict the growth of intra‐luminal thrombus in abdominal aortic aneurysms, ECCOMAS 2012. 6th European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria (10–14 September 2012).

      21 21 Biasetti, J., Gasser, T.C., Auer, M. et al. (2010). Hemodynamics of the normal aorta compared to fusiform and saccular abdominal aortic aneurysms with emphasis on a potential thrombus formation mechanism. Ann. Biomed. Eng. 38 (2): 380–390.

      22 22 Georgakarakos, E., Ioannou, C., Kamarianakis, Y. et al. (2010). The role of geometric parameters in the prediction of abdominal aortic aneurysm wall stress. Eur. J. Vasc. Endovasc. Surg. 39: 42–48.

      23 23 Georgakarakos, E., Ioannou, C.V., Papaharilaou, Y. et al. (2013). Peak wall stress does not necessarily predict the location of rupture in abdominal aortic aneurysms. Eur. J. Vasc. Endovasc. Surg. 39 (3): 302–304.

      24 24 Vorp, D.A. (2007). Biomechanics of abdominal aortic aneurysm. J. Biomech. 40: 1887–1902.

      25 25 VASCOPS Vascular Diagnostics (2007). On‐line survey: clinical assessment of AAA rupture risk: are biomechanical predictors needed? http://www.vascops.com (accessed 12 September 2021).

      26 26 Alcorn, H.G., Wolfson, S.K. Jr., Sutton‐Tyrrell, K. et al. (1996). Risk factors for abdominal aortic aneurysms in older adults enrolled in The Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 16: 963–970.

      27 27 Derubertis, B.G., Trocciola, S.M., Ryer, E.J. et al. (2007). Abdominal aortic aneurysm in women: prevalence, risk factors, and implications for screening. J. Vasc. Surg. 46: 630–635.

      28 28 Forsdahl, S.H., Singh, K., Solberg, S. et al. (2009). Risk factors for abdominal aortic aneurysms: a 7‐year prospective study: the Tromso Study, 1994–2001. Circulation 119: 2202–2208.

      29 29 Svensjo, S., Bjorck, M., and Wanhainen, A. (2013). Current prevalence of abdominal aortic aneurysm in 70‐year‐old women. Br. J. Surg. 100: 367–372.

      30 30 Lederle, F.A., Johnson, G.R., Wilson, S.E. et al. (2001). Abdominal aortic aneurysm in women. J. Vasc. Surg. 34: 122–126.

      31 31 Singh, K., Bonaa, K.H., Jacobsen, B.K. et al. (2001). Prevalence of and risk factors for abdominal aortic aneurysms in a population‐based study: the Tromso Study. Am. J. Epidemiol. 154: 236–244.

      32 32 Kent, K.C., Zwolak, R.M., Egorova, N.N. et al. (2010). Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J. Vasc. Surg. 52: 539–548.

      33 33 Lederle, F.A., Johnson, G.R., Wilson, S.E. et al. (2000). The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm Detection and Management Veterans Affairs Cooperative Study Investigators. Arch. Intern. Med. 160: 1425–1430.

      34 34 Lederle, F.A., Nelson, D.B., and Joseph, A.M. (2003). Smokers' relative risk for aortic aneurysm compared with other smoking‐related diseases: a systematic review. J. Vasc. Surg. 38: 329–334.

      35 35 Jahangir, E., Lipworth, L., Edwards, T.L. et al. (2015). Smoking, sex, risk factors and abdominal aortic aneurysms: a prospective study of 18 782 persons aged above 65 years in the Southern Community Cohort Study. J. Epidemiol. Community Health 69 (5): 481–488.

      36 36 Darling, R.C., Messina, C.R., Brewster, D.C., and Ottinger, L.W. (1977). Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56 (Suppl. 3): 161–164.

      37 37 Stringfellow, M.M., Lawrence, P.F., and Stringfellow, R.G. (1987). The influence of aorta‐aneurysm geometry upon stress in the aneurysm wall. J. Surg. Res. 42: 425–433.

      38 38 Vorp, D.A., Raghavan, M.L., and Webster, M. (1998). Mechanical wall stress in abdominal aortic aneurysm: inuence of diameter and asymmetry. J. Vasc. Surg. 27: 632–639.

      39 39 Raghavan, M.L. and Vorp, D.A. (2000). Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J. Biomech. 33 (4): 475–482.

      40 40 Raghavan, M.L., Kratzberg, J., Castro de Tolosa, E.M. et al. (2006). Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J. Biomech. 39: 3010–3016.

      41 41 Raghavan, M.L., Vorp, D.A., Federle, M.P. et al. (2000). Wall stress distribution on three‐dimensionally reconstructed models of human abdominal aortic aneurysm. J. Vasc. Surg. 31: 760–769.

      42 42 Vande Geest, J.P., Sacks, M.S., and Vorp, D.A. (2006). A planar biaxial constitutive relation for the luminal layer of intra‐luminal thrombus in abdominal aortic aneurysms. J. Biomech. 39: 2347–2354.

      43 43 Scotti, C.M., Jimenez, J., Muluk, S.C., and Finol, E.A. (2008). Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction. Comput. Methods Biomech. Biomed. Eng. 11 (3): 301–322.

      44 44 Scotti, C.M., Shkolnik, A.D., Muluk, S., and Finol, E.A. (2005). Fluid–structure interaction in abdominal aortic aneurysms: effects of asymmetry and wall thickness. Biomed. Eng. Online 4 (4): 64.

      45 45 Finol, E.A. and Amon, C.H. (2001). Blood flow in abdominal aortic aneurysms: pulsatile flow hemodynamics. J. Biomech. Eng. 123: 474–484.

      46 46 Finol, E.A. and Amon, C.H. (2002). Flow‐induced wall shear stress in abdominal aortic aneurysms: part I – steady flow hemodynamics. Comput. Methods Biomech. Biomed. Eng. 5 (4): 309–318.

      47 47 Federico, S. and Gasser, T.C. (2010). Nonlinear elasticity of biological tissues with statistical fiber orientation. J. R. Soc. Interf. 7 (47): 955–966.

      48 48 Hardin, R.H. and Sloane, N.J.A. (1996). McLaren's improved snub cube and other new spherical designs in three dimentions. Discret. Comput. Geom. 15: 429–441.

      49 49 Zhang, Y., Barocas, V.H., Berceli, S.A. et al. (2016). Multi‐scale modeling of the cardiovascular system: disease development, progression, and clinical intervention. Ann. Biomed. Eng. 44 (9): 2642–2660.

      50 50 Guidoboni, G., Glowinski, R., Cavallini, N. et al. (2009). A kinematically coupled time‐splitting scheme for fluid–structure interaction in blood flow. Appl. Math. Lett. 22 (5): 684–688.

      51 51 Guidoboni, G., Glowinski, R., Cavallini, N., and Čanić, S. (2009). Stable loosely‐coupled‐type algorithm for fluid–structure interaction in blood flow. J. Comput. Phys. 228 (18): 6916–6937.

      52 52 Bukač, M., Čanić, S., Glowinski, R. et al. (2013). Fluid–structure interaction in blood flow capturing non‐zero longitudinal structure displacement. J. Comput. Phys. 235: 515–541.

      53 53 Quarteroni, A. and Formaggia, L. (2004). Mathematical modelling and numerical simulation of the cardiovascular system in modelling of living systems. In: 12 of Handbook of Numerical Analysis, 3–127. Amsterdam: North‐Holland.

      54 54 Formaggia, L., Gerbeau, J.F., Nobile, F., and Quarteroni, A. (2001). On the coupling of 3D and 1D СКАЧАТЬ