Computational Modeling and Simulation Examples in Bioengineering. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Computational Modeling and Simulation Examples in Bioengineering - Группа авторов страница 15

СКАЧАТЬ These differential equations are integrated with a selected time step size Δt. The displacements n + 1U at end of time step are finally obtained according to equation:

      (1.8)ModifyingAbove bold upper K With ampersand c period circ semicolon Subscript tissue Baseline Superscript n 1 Baseline bold upper U Baseline equals Superscript n 1 Baseline ModifyingAbove bold upper F With ampersand c period circ semicolon Baseline

      In many real examples as in case of aneurism or heart ventricle motion, the wall displacements can be large, hence the problem becomes geometrically nonlinear. Also, the tissue of blood vessels has nonlinear constitutive law which has to be expressed with materially nonlinear finite element formulation. Therefore, the linear formulation of the equation may not be appropriate. For a nonlinear problem, there is incremental–iterative equation

      (1.9)Superscript n plus 1 Baseline ModifyingAbove bold upper K With ampersand c period circ semicolon Subscript tissue Superscript left-parenthesis i minus 1 right-parenthesis Baseline normal upper Delta bold upper U Superscript left-parenthesis i right-parenthesis Baseline equals Superscript n 1 Baseline ModifyingAbove bold upper F With ampersand c period circ semicolon Baseline Superscript left-parenthesis i minus 1 right-parenthesis Baseline minus Superscript n plus 1 Baseline bold upper F Superscript int left-parenthesis i minus 1 right-parenthesis

      Here, ΔU(i) are the nodal displacement increments for the iteration “i,” and the system matrix Superscript n plus 1 Baseline ModifyingAbove bold upper K With ampersand c period circ semicolon Subscript tissue Superscript left-parenthesis i minus 1 right-parenthesis, the force vector Superscript n 1 Baseline ModifyingAbove bold upper F With ampersand c period circ semicolon Baseline Superscript left-parenthesis i minus 1 right-parenthesis, and the vector of internal forces n + 1Fint(i − 1) correspond to the previous iteration.

      We described the material nonlinearity of blood vessels which is used in further applications. The geometrically linear part of the stiffness matrix, left-parenthesis Superscript n plus 1 Baseline bold upper K Subscript normal upper L Baseline right-parenthesis Subscript tissue Superscript left-parenthesis i minus 1 right-parenthesis, and nodal force vector, n + 1Fint(i − 1), are defined:

      (1.10)left-parenthesis Superscript n plus 1 Baseline bold upper K Subscript normal upper L Baseline right-parenthesis Subscript tissue Superscript left-parenthesis i minus 1 right-parenthesis Baseline equals integral Underscript upper V Endscripts bold upper B Subscript normal upper L Superscript upper T Baseline Superscript n plus 1 Baseline bold upper C Subscript tissue Superscript left-parenthesis i minus 1 right-parenthesis Baseline bold upper B Subscript normal upper L Baseline normal d upper V comma left-parenthesis Superscript n plus 1 Baseline bold upper F Superscript i n t Baseline right-parenthesis Superscript left-parenthesis i minus 1 right-parenthesis Baseline equals integral Underscript upper V Endscripts bold upper B Subscript normal upper L Superscript upper T Baseline Superscript n plus 1 Baseline bold sigma Superscript left-parenthesis i minus 1 right-parenthesis Baseline normal d upper V

      Here, the consistent tangent constitutive matrix Superscript n plus 1 Baseline bold upper C Subscript tissue Superscript left-parenthesis i minus 1 right-parenthesis of tissue and the stresses at the end of time step n + 1σ(i − 1) depend on the material model used.

      1.7.4 FSI Interaction

      In many models of cardiovascular examples where deformation of blood vessel walls was taken into account, we can implement the loose coupling approach for the FSI [113–116]. The overall algorithm consists of the following steps:

      1 For the current geometry of the blood vessel, determine blood flow (with Arbitrary Lagrangian–Eulerian (ALE) formulation). The boundary conditions for the fluid are wall velocities at the common blood–blood vessel surface.

      2 Calculate the loads, which act on the walls from fluid domain (blood).

      3 Determine deformation of the walls taking the current loads from the fluid domain (blood).

      4 Check for the overall convergence which includes fluid and solid domain. If convergence is reached, go to the next time step. Otherwise go to step (1).

      5 Update blood domain geometry and velocities at the common solid–fluid boundary for the new calculation of the fluid domain. In case of large wall displacements, update the finite element mesh for the fluid domain. Go to step (1).

Schematic illustration of (a) Shear stress distribution. (b) Drag force distribution.

      Together with CFD simulation, there are numerous statistics‐based machine learning methods that can be used to give more accurate and faster conclusions for clinicians [117].