Introduction to Nanoscience and Nanotechnology. Chris Binns
Чтение книги онлайн.

Читать онлайн книгу Introduction to Nanoscience and Nanotechnology - Chris Binns страница 17

Название: Introduction to Nanoscience and Nanotechnology

Автор: Chris Binns

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119172253

isbn:

СКАЧАТЬ what has all this got to do with nanotechnology? These days we can carry out, in practice, the Democritus mind experiment and study pieces of matter of smaller and smaller size right down to the atom. The important result is that the properties of the pieces start to change at sizes much bigger than a single atom. When the size of the material crosses into the “nanoworld” (Figure I.1), its fundamental properties start to change and become dependent on the size of the piece. This is, in itself, a strange thing as we take it for granted that, for example, copper will behave like copper whether the piece is a meter across or a centimeter across. This is not the case in the nanoworld and the onset of this strange behavior first shows up at the large end of the nanoworld scale with the magnetic properties of metals such as iron (Fe). It is worth spending a little time on this because it is a clear illustration of how the fundamental behavior of a piece of material can become dependent on its size.

image

      The individual atoms of most elements have a permanent magnetic moment, so they generate a dipolar magnetic field similar to a simple bar magnet. The source of the atomic magnetic moment is twofold. It arises from the orbital motion of the electrons around the nucleus, which can be considered to constitute a simple current loop and also from the intrinsic angular momentum (spin) of the electrons. These two contributions generate an orbital and a spin magnetic moment and, for the elements Fe, Co, and Ni, the two contributions are simply added to obtain the total magnetic moment. The exchange interaction that acts between neighboring atoms arises from the Pauli exclusion principle. This tends to keep electrons apart if they have the same spins so that the Coulomb repulsion energy between the outermost electrons of neighboring atoms is reduced if the electrons align their spins in the same direction. This appears as a very strong magnetic interaction trying to align the spin magnetic moments, but it is an electrostatic effect produced by the quantum nature of the electrons. It is typically 3–4 orders of magnitude stronger than the direct magnetic interaction of the atomic magnetic moments assuming they are simple bar magnets.