Introduction to Nanoscience and Nanotechnology. Chris Binns
Чтение книги онлайн.

Читать онлайн книгу Introduction to Nanoscience and Nanotechnology - Chris Binns страница 13

Название: Introduction to Nanoscience and Nanotechnology

Автор: Chris Binns

Издательство: John Wiley & Sons Limited

Жанр: Отраслевые издания

Серия:

isbn: 9781119172253

isbn:

СКАЧАТЬ of molecular interconnections between nanoparticles.

      To illustrate the state‐of‐play consider Figure I.3b, which shows a gold nanoparticle of about 3 nm diameter with thiols attached, which can be considered as an SET. The circuit diagram for an AND gate, a fundamental component of a computer logic circuit, implemented by three FETs is shown in Figure I.3c. The circuit with the FETs implemented by three Au nanoparticles SETs is shown in Figure I.3d with the dashed lines showing the connections that we are currently unable to make. Also, included are the power electrodes drawn to scale for the current state‐of‐the‐art minimum feature size (the “process size”) of 5 nm used in the semiconductor industry. This makes the whole gate about 32 nm across as compared to the equivalent using conventional “top–down” processing (see below) of about 260 nm (Figure I.3e).

image image

      Source: Reproduced with the permission of Dr. Mark Everard from [5].

      No one can fail to be impressed by the huge increases in performance, and density of components/memory elements in devices made by the electronics and magnetic recording industries in the last few decades. The above example illustrates, however, that there is still a long way to go, nicely reinforcing a lecture on nanotechnology given by the visionary Nobel Laureate Richard Feynman in 1959 entitled There's Plenty of Room at the Bottom. It is remarkable to note that this vision of nanotechnology was expounded over 60 years ago.

image

      Source: Reproduced with permission from Llamosa et al. [6], Reproduced with permission from Krishnan et al. [7].

      Combining the abilities of the synthesis method, Figure I.5c shows a dumbbell nanoparticle with an iron core coated with an intermediate shell of another metal and finally with a gold shell. In addition, a protein has been attached that is a piece of antibody, known as a nanobody (see Chapter 8, Section 8.1.7), which is able to locate and attach to specific cells in the body, in particular, cancer cells. Once attached to a cancer cell, the nanoparticles can perform a range of therapeutic and diagnostic functions (this combination of therapy and diagnosis is often referred to as “theranostics”). The magnetic core can be heated by applying an oscillating magnetic field from outside the body to which tissue is transparent, thus, heat is generated only at the cellular level of the cancer. Gentle heating to just a few degrees above core body temperature causes the cell to shut down and die in an orderly process known as apoptosis.

      This method, referred to magnetic nanoparticle hyperthermia and described in Chapter 8, Section 8.2 is potentially a symptom‐free and generic treatment for cancer and is waiting for designed nanoparticles such as those shown in Figure I.5c. Hyperthermia can also be induced by near infra‐red light, to which tissue is relatively transparent, interacting СКАЧАТЬ