Название: Plattentektonik
Автор: Wolfgang Frisch
Издательство: Автор
Жанр: География
isbn: 9783534746354
isbn:
Entlang von Transformstörungen sind die Epizentren der Beben viel schärfer auf die Plattengrenze konzentriert, weil die Störungszonen vertikal stehen. Wenn Transformstörungen kontinentale Kruste durchschneiden, können auch sie katastrophale Erdbeben auslösen. Dies ist auf das Aneinanderreiben der mächtigen, starren Platten zurückzuführen und unter anderem von der Bewegungsgeschwindigkeit abhängig. Beispiele sind die San-Andreas-Störung in Kalifornien und die Nordanatolische Störung in Kleinasien.
Die Mittelozeanischen Rücken weisen eine viel schwächere Bebentätigkeit auf. Aufwärts gerichtete Ströme bringen geschmolzenes Gesteinsmaterial bis an die Erdoberfläche. Dementsprechend ist die feste Schale, in der sich Spannungen aufbauen und entladen können, sehr dünn. Das heiße, gerade erstarrte Gestein ist noch zu plastischen Verformungen fähig. Es treten daher nur schwache und seicht gelagerte Beben auf. Dennoch kann man auch die konstruktiven Plattengrenzen auf der Erdbebenkarte deutlich erkennen.
Junge, tektonisch noch aktive Gebirgsgürtel wie der Alpen-Himalaya-Gürtel sind ebenfalls durch eine rege Bebentätigkeit gekennzeichnet. Durch die Kollision kontinentaler Massen entstehen breite Verformungszonen mit zahlreichen Bruchflächen. Man findet daher hier besonders breite Gürtel seichter Erdbeben (Abb. 1.8). Einzelne tiefere Beben zeugen von vorangegangener Subduktionstätigkeit.
Zwei Arten von Kontinenträndern
Fast alle heute existierenden Platten enthalten Bereiche mit kontinentaler und Bereiche mit ozeanischer Kruste. Dies gilt z. B. für die großen Platten beiderseits des Mittelatlantischen Rückens, der eine der auffälligsten Plattengrenzen darstellt und die beiden Amerikanischen Platten von der Eurasischen und der Afrikanischen Platte trennt (Abb. 1.2, 1.5). Aber auch die Indisch-Australische Platte, die Antarktische Platte und mehrere kleinere Platten enthalten beide Krustentypen. Demgegenüber besitzt die riesige Pazifische Platte, die sich westlich des Ostpazifischen Rückens bis an die ostasiatischen Inselbogensysteme erstreckt, nur in Kalifornien und in Neu seeland kleine Anteile kontinentaler Kruste. Die Philippinische, die Cocos- und die Nazca-Platte – kleinere Platten, die die Pazifische Platte umkränzen – besitzen nur ozeanische Kruste.
Daraus wird deutlich, dass es zwei Arten von Kontinenträndern gibt. Die Schelfbereiche fallen allgemein steil in die Tiefseebecken ab: Es sind dies die Ränder der Kontinente, an denen die kontinentale Kruste auskeilt. Die Kontinentränder können mit der ozeanischen Kruste im angrenzenden Tiefseebecken fest verbunden sein: Kontinent und Ozeanbecken gehören derselben Platte an. Solche Kontinentränder sind unter anderem rund um den Atlantik verbreitet. An ihnen finden nur geringe (meist vertikale) Bewegungen statt, weshalb sie auch als Passive Kontinentränder bezeichnet werden (Abb. 1.3 oben). Passive Kontinentränder stellen keine Plattengrenzen dar.
Demgegenüber sind Aktive Kontinentränder solche, bei denen zwischen Kontinent und Ozean eine Plattengrenze verläuft: Hier wird ein Plattenteil mit ozeanischer Kruste unter die Platte mit kontinentaler Kruste subduziert. An der Plattengrenze bildet sich eine Tiefseerinne. Dieser Typ von Kontinenträndern tritt vor allem entlang der Anden auf (Abb. 1.3 unten). Viele Subduktionszonen rund um den Pazifik sind aber durch Inselbogensysteme gekennzeichnet. Der Rand der Oberplatte ist in diesen Fällen durch vulkanische Inselketten ausgezeichnet, die von ozeanischer Kruste oder von kontinentalen Krustenschollen, die vom benachbarten Kontinent abgespalten wurden, unterlagert werden.
Magmatismus und Plattendynamik
Nicht nur die Bebentätigkeit, auch die Förderung magmatischer Schmelzen ist weitgehend an die Plattengrenzen gebunden. Jährlich werden etwas weniger als 10 km3 magmatischer (vulkanischer wie plutonischer) Gesteine an destruktiven Plattenrändern gebildet [Schmincke 2000]. Durch einen komplizierten Vorgang der Wechselwirkung zwischen der Asthenosphäre und der in sie abtauchenden subduzierenden Platte kommt es zur Bildung von Gesteinsschmelzen. Diese Schmelzen zeichnen sich durch bestimmte chemische Charakteristika aus. Sie dringen in die darüber liegende Platte ein und speisen Vulkanketten über der Subduktionszone (Abb. 1.3, 1.5). Die ostasiatischen Inselbögen und die Anden sind Beispiele dafür. Man spricht von Inselbogenmagmatismus bzw. Magmatismus Aktiver Kontinentränder oder allgemein von subduktionsgebundenem Magmatismus.
An Transformstörungen kommt es im Regelfall nicht zu nennenswerten Aufschmelzungen von Gestein. Hingegen sind die Mittelozeanischen Rücken die Hauptproduzenten von basischen Magmatiten, nämlich von Basalten und Gabbros. Durch die hohe Temperatur der aufsteigenden Mantelströme und die Druckentlastung nahe der Oberfläche wird Mantelgestein (Peridotit) bis zu mehr als 20 % aufgeschmolzen. Aus diesen Schmelzen entstehen die Gesteine der ozeanischen Kruste. Jährlich werden etwas über 20 km3 ozeanischer Kruste neu gebildet [Schmincke 2000]. Unter den Mittelozeanischen Rücken steigt also mehr als die doppelte Menge an Schmelzen auf als über Subduktionszonen.
Konstruktive und destruktive Plattengrenzen sind somit für die Bildung des weitaus größten Anteils magmatischer Gesteine verantwortlich. Aber auch innerhalb der Platten gibt es magmatische Tätigkeit, doch werden hier nur etwa 4 km3 an magmatischen Gesteinen im Jahr gebildet. Dieser Intraplatten-Magmatismus ist im Allgemeinen an „Heiße Flecken“ („hot spots“) gebunden (Abb. 1.5). Heiße Flecken sind punktförmige Magmaquellen im Bereich der Kontinente oder Ozeane und verdanken Manteldiapiren ihre Entstehung. Die Diapire sind heiße, aus großen Tiefen aufsteigende Finger im Erdmantel, die, unter den Platten angekommen, Schmelzbildung auslösen und über lange Zeiträume Vulkanausbrüche verursachen (Kap. 6). Sie treten auch an konstruktiven Plattengrenzen auf, häufiger aber innerhalb der Platten, und verursachen weiträumige Aufdomungen der Erdkruste.
Beispiele für kontinentale Heiße Flecken sind das Französische Zentralmassiv und die Vulkaneifel in Europa sowie das Tibestigebirge und der Ahaggar (Hoggar) in Nordafrika (Abb. 1.5). Alle diese Gebiete zeichnen sich durch jungen Vulkanismus aus. Im ozeanischen Bereich ist der heute aktive Teil des Hawaiischen Archipels das bekannteste Beispiel. Wenn Platten über einen Heißen Fleck hinweggleiten, entstehen lange Vulkanketten, an deren aktivem Ende der Heiße Fleck sitzt. Hawaii ist hierfür ein gutes Beispiel (Abb. 1.5). Oft sind Heiße Flecken auch an Grabenbrüche gebunden, die tief greifende, ganze Kontinente durchschneidende Störungssysteme darstellen. Das bekannteste Beispiel hierfür ist das ostafrikanische Grabenbruchsystem mit seinen Vulkanen. Gräben sind von Bruchstrukturen begrenzte Zerrungszonen, die die Lithosphäre ausdünnen und Magmen entlang von Störungen Aufstiegswege bieten. Aus ihnen können sich bei anhaltender Zerrung neue Ozeane bilden. Ein Beispiel eines gerade entstehenden Ozeans findet sich im Nordteil des ostafrikanischen Grabenbruchsystems (Afar) und im Roten Meer (Kap. 3).
Was treibt die Platten an, was bremst sie?
Die wachsenden Plattenränder, die Mittelozeanischen Rücken, bilden immer nur ozeanische Lithosphäre neu, weil nur die basaltisch-gabbroide ozeanische Kruste durch Teilaufschmelzung direkt aus dem Mantel herausgeschmolzen werden kann (kontinentale Kruste entsteht durch wesentlich СКАЧАТЬ