Overall Equipment Effectiveness. Robert Hansen C.
Чтение книги онлайн.

Читать онлайн книгу Overall Equipment Effectiveness - Robert Hansen C. страница 6

Название: Overall Equipment Effectiveness

Автор: Robert Hansen C.

Издательство: Ingram

Жанр: Здоровье

Серия:

isbn: 9780831191153

isbn:

СКАЧАТЬ was to realize the importance of maximizing factory output without the use of overtime. That efficiency, combined with an appropriate market price, helped us develop a healthy business. In our simulation, labor was a very large part of the manufacturing cost. Therefore, minimizing overtime was of vital importance. In other settings, the primary cost may be in automating a process, with labor a minor cost factor. In this case, maximizing the equipment use, even if overtime is necessary, may well be the better choice.

      The simulation reinforced the sense that the size of the opportunities for business improvement varies proportionately with the level of information sharing throughout the company. For the best decisions that lead to profitable results, decision makers in the company need information, for example, not only the cost of manufacturing each product, but also margins, compensation and reward policies.

      I once worked in a factory area where assets were used to make difficult-to-manufacture products at slower speeds. The level of output ran counter to local expectations of productivity, and the morale of the workers was low. However, once the information was shared that these products provided much greater net profit than standard goods produced elsewhere, morale improved. This understanding helped the group accept the challenge of making these difficult products effectively and overall effectiveness increased. Also, the reward system for the factory could be adjusted accordingly. Remember, what is measured is extremely important. Just measuring barrels/hr or widgets/shift does not measure the business results because profit margins vary with different products.

       1.4 Leadership for Teams

      Effective factories usually have coordinated teams that work synergistically with a common purpose. The teams, which are from all areas of the factory, have win-win relationships with their interdependent areas and services.

      According to a panel of five reliability consultants at the year 2000 annual conference of the Society of Maintenance Reliability Professionals (SMRP), successful initiatives and programs are primarily driven from the top down rather than from the bottom up. In fact when asked, the panel couldn’t relate a single successful experience with a bottom up initiative unless it was first communicated to and accepted by the area leadership.

      My own experience supports the concept that successful programs can be implemented at the level of the ‘Champion’ on down. This can be seen where successful programs develop in one work center without ever transferring to other factory areas. When the person who championed the program leaves or transfers, all too often the work center does not sustain the high performance. However, the champions are able to generate new initiatives in other areas once they establish a rapport with the new community.

      Management support and area leadership significantly influences the success of initiatives. To sustain a level of excellence, the total community--management, the line organization, and support groups--has to be of one mind. High performance work groups bridge the ‘top down’ syndrome by acceptance of synergistic team leadership.

      Nearly everyone comes to work with a desire to do a good job and to be part of a successful unit. Your job and the security of your business depend on strong productivity and top effectiveness. Frustration comes when priorities are not clear and reinforcement is awarded inconsistently. Thus, a single metric--measuring the community as a whole--can be powerful in bringing everyone together.

      Let’s look at an example. I once facilitated a workshop activity aimed at improving the changeover time between orders for a packaging operation. This area had four similar flow-lines working around the clock seven days a week. The area had four shifts with four crews per shift, or a total of sixteen crews. Because each flow-line had two to ten changeovers per day, reducing the changeover time for the work area would greatly improve effectiveness. A workshop for developing quick changeovers using a methodology called Single Minute Exchange of Die (SMED)4 was selected for this task. SMED or quick changeover is covered in section 8.3 of this book.

      The operations manager decided to have one crew be the pilot crew that would go through the workshop and develop a best practice methodology. This approach proved to be more complex than expected. The area worked with approximately 130 different products, using 35 different processes. Many crews worked with more of one combination than another. Therefore, a typical changeover really did not exist.

      In the workshop, the pilot crew categorized changeovers. They initiated improvements that reduced the majority of their changeover times by 40 percent. At the end of the pilot period they presented the results to the product line superintendent. Although they were proud to receive the superintendent’s congratulations, they were shocked when he directed them to teach their methods to the other crews. They had not anticipated this directive, and felt that their reward was more work, beyond the original scope of the workshop. As a pilot crew, they synergistically made improvements, however other crews did not readily accept ‘outside’ ideas and passively committed to new methods. Thus, the improvement methods took much longer to be accepted by the other crews.

      What actions would have been better? Proactive leadership would have led to faster results. When the operations manager initiated the request for improvement, he should have confirmed the efforts were supported by the superintendent and then communicated this to all crews. The overall objective should have been outlined with the strategy of how a pilot crew would be selected from volunteers, that this crew would make recommendations for best practices, and that all crews were expected to adapt these methods into their changeovers. If the results of the improvement were visible to the crews, and a system was developed to reward the community when the average changeover improved, then the methods would have been implemented quickly. The superintendent should have invested three or four hours of proactive leadership, earning the support of all the crews. By clearly communicating the desired goal and the expectation that everyone will help implement improved work practices, proactive leadership would provide the community with a common vision. This style of leadership and communication open the way for rapid implementation and sustain improved practices.

      Proactive leadership is a vital part of developing work place improvements. It can start at any level of the organization. As objectives are selected, approval should be solicited from the area leadership team to clear the way for rapid success. This book should provide the tools to generate compelling programs for higher effectiveness

       1.5 Moving the Community to Improved Performance

      Having an effective factory is not the only requirement of a successful business. Many other factors are also important. Which way is the economy going to move? Will the competition cut prices? Is the product in demand? Will the product evolve into another? What are the distribution channels for the product? Should the source of supply be in one place or several? World-class companies continually address these and other questions as they shape and modify their business plans.

      World-class companies are known for another attribute. They are built around the concept that an effective factory producing “good goods” as needed to meet market demands is a valuable asset for any company to have. This attribute is maintained both short and long term. One of the main metrics used to identify world-class companies addresses how effectively factories run their processes when scheduled to run. OEE is designed to provide this number. Yet most factories do not compute OEE or use it to set and maintain their priorities. OEE is the product of availability (actual run time vs. scheduled time) times speed rate (actual rate vs. ideal speed rate) times quality rate (good product vs. total product). These parameters are defined in section 2.1. A second metric examines how effectively do factories run their processes relative to the total calendar time. This metric, Total Effectiveness Equipment Performance or TEEP, will be discussed in section 1.6.

      All manufacturing processes have some kind of constraint. Factories often subdivide product manufacturing into several steps, using inventories or СКАЧАТЬ