Название: Insectivorous Plants
Автор: Darwin Charles
Издательство: Public Domain
Жанр: Зарубежная классика
isbn:
isbn:
We here see that at the lower of these two temperatures, hydrochloric acid with pepsin digests, within the same time, rather less than half the quantity of fibrin compared with what it digests at the higher temperature; and the power of butyric acid is reduced in the same proportion under similar conditions and temperatures. We have also seen that butyric acid, which is much more efficacious than propionic or valerianic acids, digests with pepsin at the higher temperature less than a third of the fibrin which is digested at the same temperature by hydrochloric acid.]
I will now give in detail my experiments on the digestive power of the secretion of Drosera, dividing the substances tried into two series, namely those which are digested more or less completely, and those which are not digested. We shall presently see that all these substances are acted on by the gastric juice of the higher animals in the same manner. I beg leave to call attention to the experiments under the head albumen, showing that the secretion loses its power when neutralised by an alkali, and recovers it when an acid is added.
Substances which are completely or partially digested by the Secretion of Drosera.
Albumen. – After having tried various substances, Dr. Burdon Sanderson suggested to me the use of cubes of coagulated albumen or hard-boiled egg. I may premise that five cubes of the same size as those used in the following experiments were placed for the sake of comparison at the same time on wet moss close to the plants of Drosera. The weather was hot, and after four days some of the cubes were discoloured and mouldy, with their angles a little rounded; but they were not surrounded by a zone of transparent fluid as in the case of those undergoing digestion. Other cubes retained their angles and white colour. After eight days all were somewhat reduced in size, discoloured, with their angles much rounded. Nevertheless in four out of the five specimens, the central parts were still white and opaque. So that their state differed widely, as we shall see, from that of the cubes subjected to the action of the secretion.
[Experiment 1.
Rather large cubes of albumen were first tried; the tentacles were well inflected in 24 hrs.; after an additional day the angles of the cubes were dissolved and rounded;19 but the cubes were too large, so that the leaves were injured, and after seven days one died and the others were dying. Albumen which has been kept for four or five days, and which, it may be presumed, has begun to decay slightly, seems to act more quickly than freshly boiled eggs. As the latter were generally used, I often moistened them with a little saliva, to make the tentacles close more quickly.
Experiment 2. – A cube of 1/10 of an inch (i.e. with each side 1/10 of an inch, or 2.54 mm. in length) was placed on a leaf, and after 50 hrs. it was converted into a sphere about 3/40 of an inch (1.905 mm.) in diameter, surrounded by perfectly transparent fluid. After ten days the leaf re-expanded, but there was still left on the disc a minute bit of albumen now rendered transparent. More albumen had been given to this leaf than could be dissolved or digested.
Experiment 3. – Two cubes of albumen of 1/20 of an inch (1.27 mm.) were placed on two leaves. After 46 hrs. every atom of one was dissolved, and most of the liquefied matter was absorbed, the fluid which remained being in this, as in all other cases, very acid and viscid. The other cube was acted on at a rather slower rate.
Experiment 4. – Two cubes of albumen of the same size as the last were placed on two leaves, and were converted in 50 hrs. into two large drops of transparent fluid; but when these were removed from beneath the inflected tentacles, and viewed by reflected light under the microscope, fine streaks of white opaque matter could be seen in the one, and traces of similar streaks in the other. The drops were replaced on the leaves, which re-expanded after 10 days; and now nothing was left except a very little transparent acid fluid.
Experiment 5. – This experiment was slightly varied, so that the albumen might be more quickly exposed to the action of the secretion. Two cubes, each of about 1/40 of an inch (.635 mm.), were placed on the same leaf, and two similar cubes on another leaf. These were examined after 21 hrs. 30 m., and all four were found rounded. After 46 hrs. the two cubes on the one leaf were completely liquefied, the fluid being perfectly transparent; on the other leaf some opaque white streaks could still be seen in the midst of the fluid. After 72 hrs. these streaks disappeared, but there was still a little viscid fluid left on the disc; whereas it was almost all absorbed on the first leaf. Both leaves were now beginning to re-expand.]
The best and almost sole test of the presence of some ferment analogous to pepsin in the secretion appeared to be to neutralise the acid of the secretion with an alkali, and to observe whether the process of digestion ceased; and then to add a little acid and observe whether the process recommenced. This was done, and, as we shall see, with success, but it was necessary first to try two control experiments; namely, whether the addition of minute drops of water of the same size as those of the dissolved alkalies to be used would stop the process of digestion; and, secondly, whether minute drops of weak hydrochloric acid, of the same strength and size as those to be used, would injure the leaves. The two following experiments were therefore tried: —
Experiment 6. – Small cubes of albumen were put on three leaves, and minute drops of distilled water on the head of a pin were added two or three times daily. These did not in the least delay the process; for, after 48 hrs., the cubes were completely dissolved on all three leaves. On the third day the leaves began to re-expand, and on the fourth day all the fluid was absorbed.
Experiment 7. – Small cubes of albumen were put on two leaves, and minute drops of hydrochloric acid, of the strength of one part to 437 of water, were added two or three times. This did not in the least delay, but seemed rather to hasten, the process of digestion; for every trace of the albumen disappeared in 24 hrs. 30 m. After three days the leaves partially re-expanded, and by this time almost all the viscid fluid on their discs was absorbed. It is almost superfluous to state that cubes of albumen of the same size as those above used, left for seven days in a little hydrochloric acid of the above strength, retained all their angles as perfect as ever.
Experiment 8. – Cubes of albumen (of 1/20 of an inch, or 2.54 mm.) were placed on five leaves, and minute drops of a solution of one part of carbonate of soda to 437 of water were added at intervals to three of them, and drops of carbonate of potash of the same strength to the other two. The drops were given on the head of a rather large pin, and I ascertained that each was equal to about 1/10 of a minim (.0059 ml.), so that each contained only 1/4800 of a grain (.0135 mg.) of the alkali. This was not sufficient, for after 46 hrs. all five cubes were dissolved.
Experiment 9. – The last experiment was repeated on four leaves, with this difference, that drops of the same solution of carbonate of soda were added rather oftener, as often as the secretion became acid, so that it was much more effectually neutralised. And now after 24 hrs. the angles of three of the cubes were not in the least rounded, those of the fourth being so in a very slight degree. Drops of extremely weak hydrochloric acid (viz. one part to 847 of water) were then added, just enough to neutralise the alkali which was still present; and now digestion immediately recommenced, so that after 23 hrs. 30 m. three of the cubes were completely dissolved, whilst the fourth was converted into a minute sphere, surrounded by transparent fluid; and this sphere next day disappeared.
Experiment 10. – Stronger solutions of carbonate of soda and of potash were next used, viz. one part to 109 of water; and as the same-sized drops were given as before, each drop contained 1/1200 of a grain (.0539 mg.) of either salt. Two cubes of albumen (each about 1/40 of an inch, or .635 mm.) were placed on the same leaf, and two on another. Each leaf received, as soon as the secretion became slightly acid (and this occurred four times within 24 hrs.), drops either of the soda or potash, and the acid was thus effectually neutralised. The experiment now succeeded perfectly, for after СКАЧАТЬ
19
In all my numerous experiments on the digestion of cubes of albumen, the angles and edges were invariably first rounded. Now, Schiff states ('Leons phys. de la Digestion,' vol. ii. 1867, page 149) that this is characteristic of the digestion of albumen by the gastric juice of animals. On the other hand, he remarks "les dissolutions, en chimie, ont lieu sur toute la surface des corps en contact avec l'agent dissolvant."