A History of Inventions, Discoveries, and Origins, Volume I (of 2). Johann Beckmann
Чтение книги онлайн.

Читать онлайн книгу A History of Inventions, Discoveries, and Origins, Volume I (of 2) - Johann Beckmann страница 28

СКАЧАТЬ preparatory measure.]

      It is certain, however, that men began very early to contrive means for supplying divers with air under the water, and of thereby enabling them to remain under it much longer. For this purpose the diving-bell, campana urinatoria, was invented. Those who had no idea of this machine, might have easily been led to it by the following experiment. If a drinking-glass inverted be immersed in water, in such a manner that the surface of the water may rise equally around the edge of the glass, it will be found that the glass does not become filled with water, even when pressed down to the greatest depth; for where there is air no other body can enter, and by the above precaution the air cannot be expelled by the water. In like manner, if a bell of metal be constructed under which the diver can stand on a stool suspended from it so that the edge of the bell may reach to about his knee, the upper part of his body will be secured from water, and he can, even at the bottom of the sea, breathe the air enclosed in the bell.

      The invention of this bell is generally assigned to the sixteenth century, and I am of opinion that it was little known before that period. We read, however, that even in the time of Aristotle divers used a kind of kettle to enable them to continue longer under water; but the manner in which it was employed is not clearly described.

      The oldest information we have respecting the use of the diving-bell in Europe is that of John Taisnier, quoted by Schott284. The former, who was born at Hainault in 1509, had a place at court under Charles V., whom he attended on his voyage to Africa. He relates in what manner he saw at Toledo, in the presence of the emperor and several thousand spectators, two Greeks let themselves down under water, in a large inverted kettle, with a burning light, and rise up again without being wet. It appears that this art was then new to the emperor and the Spaniards, and that the Greeks were induced to make the experiment in order to prove the possibility of it. After this period the use of the diving-bell seems to have become still better known. It is described more than once in the works of Lord Bacon, who explains its effects, and remarks that it was invented to facilitate labour under the water285.

      In the latter part of the seventeenth century the diving-bell was sometimes employed in great undertakings. When the English, in the year 1588, dispersed the Spanish fleet called the Invincible Armada, part of the ships went to the bottom near the Isle of Mull, on the western coast of Scotland; and some of these, according to the account of the Spanish prisoners, contained great riches. This information excited, from time to time, the avarice of speculators, and gave rise to several attempts to procure part of the lost treasure. In the year 1665, a person was so fortunate as to bring up some cannon, which, however, were not sufficient to defray the expenses. Of these attempts, and the kind of diving-bell used, an account has been given by a Scotsman named Sinclair286; but Paschius287, Leupold288 and others falsely ascribe the invention of this machine to that learned man. He himself does not lay claim to this honour; but says only, that he conversed with the artist and measured the machine.

      Some years after attempts of the like kind were renewed. William Phipps, the son of a blacksmith, born in America in 1650, and who had been brought up as a ship-carpenter at Boston, formed a project for searching and unloading a rich Spanish ship sunk on the coast of Hispaniola, and represented his plan in such a plausible manner, that king Charles II. gave him a ship, and furnished him with every thing necessary for the undertaking. He set sail in the year 1683; but, being unsuccessful, returned again in great poverty, though with a firm conviction of the possibility of his scheme. He endeavoured, therefore, to procure another vessel from James II., who was then on the throne; but as he failed in this, he tried to find the means of executing his design by the support of private persons, and, according to the prevailing practice, opened for that purpose a subscription. At first he was laughed at; but at length the duke of Albemarle, son of the celebrated General Monk, took part in it, and advanced a considerable sum to enable him to make the necessary preparations for a new voyage. Phipps soon collected the remainder; and in 1687 set sail in a ship of two hundred tons burthen to try his fortune once more, having previously engaged to divide the profit according to the twenty shares of which the subscription consisted. At first, all his labour proved fruitless; but at last, when his patience was almost entirely exhausted, he was so lucky as to bring up, from the depth of six or seven fathoms, so much treasure, that he returned to England with the value of two hundred thousand pounds sterling. Of this sum he himself got about sixteen, others say twenty thousand, and the duke ninety thousand pounds. After he came back, some persons endeavoured to persuade the king to seize both the ship and the cargo, under a pretence that Phipps, when he solicited for his Majesty’s permission, had not given accurate information respecting the business. But the king answered, with much greatness of mind, that he knew Phipps to be an honest man, and that he and his friends should share the whole among them, had he returned with double the value. His Majesty even conferred upon him the honour of knighthood, to show how much he was satisfied with his conduct. This Phipps was afterwards high sheriff of New England, and died at London, greatly respected, in 1693. This affair was attended with such good consequences to the duke of Albemarle, that he obtained from the king the governorship of Jamaica, in order to try his fortune with other ships sunk in that neighbourhood. But whether it was that the gold had been already taken from the one before-mentioned, or that, when the vessel went to pieces, the sea had dispersed the cargo, it is certain that nothing further was found worth the labour of searching for289.

      In England, however, several companies were formed, and obtained exclusive privileges of fishing up goods on certain coasts, by means of divers. The most considerable of these was that which, in 1688, tried its success at the Isle of Mull, and at the head of which was the earl of Argyle. The divers went down to the depth of sixty feet under water, remained there sometimes a whole hour, and brought up gold chains, money, and other articles, which, however, when collected, were of very little importance290. Without giving more examples of the use of the diving-bell, I shall now mention some of those who, in later times, have endeavoured to improve it. That this machine was very little known in the first half of the sixteenth century, I conclude from the following circumstance. To the oldest edition of Vegetius on the art of war, there are added, by the editor, some figures, of which no explanation is given in the book. Among these is represented a method of catching fish with the hands, at the bottom of the sea. The apparatus for this purpose consists of a cap, which is fitted so closely to the head of the diver that no water can make its way between; and from the cap there ascends a long leather pipe, the opening of which floats on the surface of the water. Had the person who drew these figures been acquainted with the diving-bell, he would certainly have delineated it rather than this useless apparatus291. Of the old figures of a diving machine, that which approaches nearest to the diving-bell is in a book on fortification, by Lorini; who describes a square box bound round with iron, which is furnished with windows, and has a stool affixed to it for the diver. This more ingenious contrivance appears, however, to be older than that Italian; at least he does not pretend to be the inventor of it292.

      In the year 1617, Francis Kessler gave a description of his water-armour293, intended also for diving, but which cannot really be used for that purpose294. In the year 1671, Witsen taught, in a better manner than any of his predecessors, the construction and use of the diving-bell295; but he is much mistaken when he says that it was invented at Amsterdam. In 1679 appeared, for the first time, Borelli’s well-known work De Motu Animalium296, in which he not only described the diving-bell, but also proposed another, the impracticability of which was shown by James Bernoulli297. When Sturm published his Collegium Curiosum, in 1678, he proposed some hints for the improvement СКАЧАТЬ



<p>284</p>

“Were the ignorant vulgar told that one could descend to the bottom of the Rhine, in the midst of the water, without wetting one’s clothes, or any part of one’s body, and even carry a lighted candle to the bottom of the water, they would consider it as altogether ridiculous and impossible. This, however, I saw done at Toledo, in Spain, in the year 1538, before the emperor Charles V. and almost ten thousand spectators. The experiment was made by two Greeks, who taking a very large kettle, suspended from ropes with the mouth downwards, fixed beams and planks in the middle of its concavity, upon which they placed themselves, together with a candle. The kettle was equipoised by means of lead fixed round its mouth, so that when let down towards the water no part of its circumference should touch the water sooner than another, else the water might easily have overcome the air included in it, and have converted it into moist vapour. If a vessel thus prepared be let down gently, and with due care, to the water, the included air with great force makes way for itself through the resisting fluid. Thus the men enclosed in it remain dry, in the midst of the water, for a little while, until, in the course of time, the included air becomes weakened by repeated aspiration, and is at length resolved into gross vapours, being consumed by the greater moisture of the water: but if the vessel be gently drawn up, the men continue dry, and the candle is found burning.” – Taisneri Opuscula de celerrimo motu, quoted by Schott in his Technica Curiosa, lib. vi. c. 9, p. 393.

<p>285</p>

“Excellent use may be made of this vessel, which is employed sometimes in labouring under water on sunk ships, to enable the divers to continue longer under water, and to breathe, in turns, for a little while. It was constructed in this manner. A hollow vessel was made of metal, which was let down equally to the surface of the water, and thus carried with it to the bottom of the sea the whole air it contained. It stood upon three feet, like a tripod, which were in length somewhat less than the height of a man; so that the diver, when he was no longer able to contain his breath, could put his head into the vessel, and, having breathed, return again to his work.” – Novum Organum, lib. ii. § 50. Bacon relates the same thing in his Phænomena Universi.

<p>286</p>

G. Sinclari Ars nova et magna gravitatis et levitatis. Rot. 1669, 4to, p. 220.

<p>287</p>

Paschii Inventa nov-antiqua. Lipsiæ, 1700, 4to, p. 650.

<p>288</p>

Theatri Statici universalis pars tertia. Lipsiæ, 1726, fol. p. 242.

<p>289</p>

This account is taken from the History of the British Empire in America, by J. Wynne. London, 1770, 2 vols. 8vo, i. p. 131, and from Campbell’s Lives of the Admirals.

<p>290</p>

Martin’s Description of the Western Islands. The second edition. London, 1716, 8vo, p. 253. – Campbell’s Political Survey of Britain. London, 1774, 2 vols. 4to, p. 604.

<p>291</p>

These figures are to be found in the following editions of Vegetius: – Lutetiæ apud C. Wechelum, 1532, fol. p. 180. Fegetius, vier Bücher von der Rytterschafft. Erfurt, Hans. Knappen, 1511, fol. These figures are inserted also in Leupold’s Theatrum Pontificale, p. 11, tab. ii. fig. 6.

<p>292</p>

Le Fortificationi di Bounaiuto Lorini. Venet. 1609, fol. p. 232.

<p>293</p>

Fran. Kessleri Secreta. Oppenheim, 1617, 8vo.

<p>294</p>

Bartholini Acta Hafn. 1676, p. i. obs. 17.

<p>295</p>

Scheeps-bouw, ut supra.

<p>296</p>

See vol. i. p. 222, edit. Hag. Com. 1743.

<p>297</p>

Acta Eruditorum, 1683, Decemb. p. 553. Jac. Bernoulli Opera.