A History of Inventions, Discoveries, and Origins, Volume I (of 2). Johann Beckmann
Чтение книги онлайн.

Читать онлайн книгу A History of Inventions, Discoveries, and Origins, Volume I (of 2) - Johann Beckmann страница 30

СКАЧАТЬ part, so that when the case was put on, he could walk about very easily at the bottom of the sea, and go into the cabin and other parts of a ship in a wreck, and deliver out the goods; and that he practised this method for forty years, and thereby acquired a large fortune and equal fame302.

      M. Klingert also invented a similar kind of apparatus, and described it in a pamphlet published at Breslau in 1798. The armour was made of tin-plate, in the form of a cylinder, with a round end to enclose the head and body; also, a leather jacket with short sleeves, and a pair of water-tight drawers of the same, buttoned on the metal part, where they joined, and were made tight by brass hoops. Two distinct flexible pipes terminated in the helmet, and rose to the surface of the water; one was for inhaling, and terminated in an ivory mouth-piece, the other was for the escape of foul air. The body was kept down by weights.

      Another method of supplying air to the apparatus was used by Mr. Tonkin in 1804. This consisted in the application of a bellows or pump, until the elastic force of the air was equal to the pressure of the water, the foul air being allowed to escape into the water through a valve, or conducted to the surface by a pipe303.]

      COLOURED GLASS. – ARTIFICIAL GEMS

      It is probable that there was no great interval between the discovery of the art of making glass, and that of giving it different colours. When the substance of which it is formed contains, by accident, any metallic particles, the glass assumes some tint; and this happens oftener than is wished; nay, a considerable degree of foresight is necessary to produce glass perfectly colourless; and I am of opinion that this skill has not been attained till a late period in the progress of the art. Even in Pliny’s time the highest value was set upon glass entirely free from colour, and transparent, or, as it was called, crystal304. From the different colours which glass acquired of itself, it was easy to conceive the idea of giving it the tinge of some precious stone: and this art, in ancient times, was carried to a very great extent. Proofs of this may be found in Pliny, who, besides others, mentions artificial hyacinths, sapphires, and that black glass which approached very near to the obsidian stone, and which in more than one place he calls gemmæ vitreæ305. Trebellius Pollio relates in how whimsical a manner Gallienus punished a cheat who had sold to his wife a piece of glass for a jewel306: and Tertullian ridicules the folly of paying as dear for coloured glass as for real pearls. The glass-houses at Alexandria were celebrated among the ancients for the skill and ingenuity of the workmen employed in them. From these, the Romans, who did not acquire a knowledge of that art till a late period, procured for a long time all their glass ware. The learned author of Recherches sur les Égyptiens et les Chinois, in the end of his first volume, relates more of these glass-houses than I know where to find in the works of the ancients; but it is certain that coloured glass was made even in those early ages. The emperor Adrian received as a present from an Egyptian priest, several glass cups which sparkled with colours of every kind, and which, as costly wares, he ordered to be used only on grand festivals307. Strabo tells us, that a glass-maker in Alexandria informed him that an earth was found in Egypt, without which the valuable coloured glass could not be made308.

      Seneca, in his ninetieth epistle, in which he judges too philosophically, that is, with too little knowledge of the world, in regard to the value of labour, mentions one Democritus who had discovered the art of making artificial emeralds309; but in my opinion this discovery consisted in giving a green colour by cementation to the natural rock crystal: and this art I imagine was treated of in that book, the name of which Pliny, through an over-anxious care lest the deception should become common, does not mention310. For colouring crystal and glass, so as to resemble stones, Porta311, Neri312, and others have, in modern times, given directions which are, however, not much used, because the crystal is thereby liable to acquire so many flaws that it cannot be easily cut afterwards, though, as Neri assures us, these by attention may sometimes be avoided.

      It is worthy of remark, that in some collections of antiquities at Rome, there are pieces of coloured glass which were once used as jewels. In the Museum Victorium, for example, there are shown a chrysolite and an emerald, both of which are so well executed, that they are not only perfectly transparent and coloured throughout, but neither externally nor internally have the smallest blemish, which certainly could not be guarded against without great care and skill.

      What materials the ancients used for colouring glass, has not been told to us by any of their writers. It is, however, certain that metallic oxides only can be employed for that purpose, because these pigments withstand the heat of the glass furnaces; and it is highly probable that ferruginous earth, if not the sole, was at least the principal substance, by which not only all shades of red, violet, and yellow, but even a blue colour, could be communicated, as Professor Gmelin has shown313. Respecting the red, of which only I mean here to speak, there is the less doubt, as, at present, sometimes an artificial, and sometimes a natural, iron ochre is often employed for that purpose. For common works this is sufficient; but when pure clear glass, coloured strongly throughout with a beautiful lively red, free from flaws, and in somewhat large pieces, is required, iron is not fit, because its colour, by the continued heat necessary for making glass, either disappears or becomes dirty and almost blackish314.

      In the last century, some artists in Germany first fell upon the method of employing gold instead of iron, and of thereby making artificial rubies, which when they were well set could deceive the eye of a connoisseur, unless he tried them with a diamond or a file. The usual method was to dissolve the gold in aqua regia, and to precipitate it by a solution of tin, when it assumed the form of a purple-coloured powder. This substance, which must be mixed with the best frit, is called the precipitate of Cassius, gold-purple, or mineral-purple315.

      This Cassius, from whom it takes its name, was called Andrew, and because both the father and the son had the same christian name, they have been often confounded with each other. The father was secretary to the duke of Schleswig, and is not known as a man of letters; but the son is celebrated as the inventor or preparer of the gold-purple, and of a bezoar-essence. He took the degree of doctor at Leyden, in 1632, practised physic at Hamburg, and was appointed physician in ordinary to the bishop of Lubec. As far as I know, he never published anything respecting his art; but this service was rendered to the public by his son, who was born at Hamburg, and resided as a physician at Lubec. He was the author of a well-known treatise, now exceedingly scarce, entitled Thoughts concerning that last and most perfect work of nature, and chief of metals, gold, its wonderful properties, generation, affections, effects, and fitness for the operations of art; illustrated by experiments316.

      From this work, it will be easily understood why the author does not give himself out as the inventor of the gold-purple317, which he is commonly supposed to be, at which Lewis is much astonished. It is seen also by it that Leibnitz calls him improperly a physician at Hamburg, having probably confounded the father and son together318. Upon the whole, it is not proved that any of the Cassius’s was the inventor of the above precipitate, else it would certainly not have been omitted319 in this treatise; and mention of gold-purple is to be found in the works of several old chemists320.

      Something of this kind has, doubtless, been meant by the old chemists, СКАЧАТЬ



<p>302</p>

Martin’s Philosophia Britannica, vol. iii. p. 180.

<p>303</p>

For further information on this important subject the reader is referred to the article Diving-bell in the Encyclopædia Britannica and its Supplement, also the Encyclopædia Metropolitana, Brewster’s Edinburgh and the Penny Cyclopædia, Halley’s papers in the Phil. Trans. for 1716 and 1721, Triewald’s in the same for 1736, Healy in the Philosophical Magazine, vol. xv., and Leopold’s Theatrum Machinarum Hydraulicarum.

<p>304</p>

Lib. xxxvi. c. 26.

<p>305</p>

Lib. xxxv. c. 26. and lib. xxxvii. c. 9. The lapis obsidianus, which Obsidius first found in Ethiopia, and made known, is undoubtedly the same as that vulcanic glass which is sometimes called Icelandic agate, pumex vitreus, and by the Spaniards, who brought it from America and California, named galinace.

<p>306</p>

Historiæ Augustæ Scriptores, in vita Gallieni, cap. 12.

<p>307</p>

Ib. in Vopisc. vita Saturnini, c. 8.

<p>308</p>

Strabo, Amst. 1707, fol. lib. xvi. p. 1099. – Some consider the glass earth here mentioned as a mineral alkali that was really found in Egypt, and which served to make glass; but, as the author speaks expressly of coloured glass, I do not think that the above salt, without which no glass was then made, is what is meant; but rather a metallic oxide, such perhaps as ochre or manganese.

<p>309</p>

Sen. Op. Lipsii, p. 579.

<p>310</p>

Hist. Nat. lib. xxxvii. c. 12. A passage in Diodorus Siculus, lib. ii. c. 52, alludes, in my opinion, to this method of colouring by cementation.

<p>311</p>

Magia Naturalis. Franc. 1591, 8vo, p. 275.

<p>312</p>

Kunkel’s Ars Vitraria. Nur. 1743, 4to, pp. 98, 101.

<p>313</p>

Comment. Soc. Scient. Gotting. ii. p. 41.

<p>314</p>

Montamy von den Farben zuni Porzellan- und Email-malen. Leipsic, 1767, 8vo, p. 82. Fontanieu, p. 16.

<p>315</p>

[The extensive use of this substance in colouring glass and porcelain has rendered its best and most œconomical preparation a subject of interest both to the chemist and the manufacturer. Although the determination of its true chemical composition has presented obstacles almost insuperable, still many important points with regard to its manufacture have been elucidated. It has been found that the tin salt used in precipitating it must contain both the binoxide and protoxide of tin in certain proportions, and it has been also discovered that the degree of dilution both of the gold and tin solutions exerts a very perceptible influence on the beauty of the preparation. Capaun has examined this latter point with great attention, by testing all the different products as to their power of colouring glass.

The first point to be attained is the preparation of a solution of sesquioxide of tin; and for this purpose Bolley proposes to employ the double compound of bichloride of tin with sal-ammoniac (pink salt). This salt is not altered by exposure to the atmosphere, and contains a fixed and known quantity of bichloride of tin, and when boiled with metallic tin it takes up so much as will form the protochloride; as the exact quantity of the bichloride is known, it is very easy to use exactly such a quantity of tin as will serve to form the sesquichloride. 100 parts of the pink salt require for this purpose 10·7 parts of metallic tin.

Capaun recommends dissolving 1·34 gr. of gold in aqua regia, an excess being carefully avoided, and diluting the solution with 480 grs. of water. 10 grs. of pink salt are mixed with 1·07 gr. of tin filings and 40 grs. of water, and the whole boiled till the tin is dissolved. 140 grs. of water are then added to this, and the solution gradually mixed with the gold liquor, slightly warmed, until no more precipitation ensues. The precipitate washed and dried weighs 4·92 grs. and is of a dark brown colour.

M. Figuier states, as the results of his investigations, that the purple of Cassius is a perfectly definite combination of protoxide of gold and of stannic acid, or peroxide of tin, the proof of which is, that it is instantly produced when protoxide of gold and peroxide of tin are placed in contact.]

<p>316</p>

The original title runs thus: – De extremo illo et perfectissimo naturæ opificio ac principe terrenorum sidere, auro, et admiranda ejus natura, generatione, affectionibus, effectis, atque ad operationes artis habitudine, cogitata; experimentis illustrata. Hamburgi, 1685, 8vo.

<p>317</p>

Joh. Molleri Cimbria Literata. Havniæ, 1774, fol. i. p. 88.

<p>318</p>

Miscellanea Berolinensia, i. p. 94.

<p>319</p>

The author shows only, in a brief manner, in how many ways this precipitate can be used; but he makes no mention of employing it in colouring glass.

<p>320</p>

I cannot, however, affirm that the vasa murrhina of the ancients were a kind of porcelain coloured with this salt of gold. This is only a mere conjecture.