Концепты. Тонкая пленка цивилизации. Ю. С. Степанов
Чтение книги онлайн.

Читать онлайн книгу Концепты. Тонкая пленка цивилизации - Ю. С. Степанов страница 20

Название: Концепты. Тонкая пленка цивилизации

Автор: Ю. С. Степанов

Издательство:

Жанр: Культурология

Серия:

isbn: 5-9551-0205-1

isbn:

СКАЧАТЬ общие принципы вроде начал термодинамики, энтропии и т. п., сколько более конкретные исследовательские понятия, в частности, понятие функции. Это понятие очень популярно у современных исследователей разных областей науки. Математик и культуролог А. Н. П а р ш и н исследовал «числа как функции» [Паршин 2002: 7 и сл. ] (культурологам, в частности, будет интересно «рисунчатое, движением руки, изображение» кривой и знака функции).

      Необходимые К. А. Рыбникову для его «Истории математики» (с. 354) ссылки на Л. Больцмана и, самое главное, на развитие понятия функции (с. 200, 206 и сл.) оказываются параллельными (как «изотемы») ссылкам автора данной книги для его истории культуры (например, в работе «Язык и метод. К современной философии языка» [Степанов 1998: 332, 495]; в работе «Функции и глубинное» [Степанов 2002] и др.). По этой причине последнюю изотему мы подчеркнем отдельно – в следующем разделе.

      9. Изотема 9

      Функции и глубинное. Логико—математическое понятие функции & Пропозициональная функция в лингвистике &

      Бинарная функция в математике и сложное слово в лингвистике

      Логико—математическое понятие функции является в настоящее время, несомненно, центральным по положению в нашей системе рассуждения и содержательно важнейшим для нашей цели. Им вводится целый класс математико—лингвистических аналогий, параллелей и исследовательских ситуаций. Ниже нумеруем их – в порядке возникновения в нашем рассуждении – цифрами от 1 и далее; но эта нумерация все же связана до некоторой степени с иерархией понятий в системе.

      Теперь рассмотрим более конкретно группу лингвистических явлений, составляющих параллели, аналоги, аналогии (все эти термины для нас равнозначны) к логико—математическим понятиям, покрываемым общим понятием «Функция» или находящимся в какой—либо существенной связи с ним. Для этого «слева» указываем то или иное необходимое частное понятие функции в математическом смысле или контексте, а «справа» его лингвистический аналог.

      Таким образом, нижеследующий текст представляет собой своего рода двуязычный словарь, хотя в типографском отношении входной «левый» термин и «переводной» «правый» могут быть разъединены несколькими строками или даже абзацами.

      Лейтмотивом в классе «Функция» является для нас (для лингвиста) идея процесса (вычисления или построения), но, как мы увидим уже в разделе 1, со стороны математики именно ее важность иногда отрицается.

      1. Рекурсивные функции и предикаты: процесс и рекурсия. Дж. Литлвуд, рассматривая (резко критически) книгу А. Р. Форсайта «Теория функций комплексного переменного», изданную в 1893 г., но все еще читаемую, цитирует из нее: «Возникновение идеи функциональности вначале было связано с функциями вещественных переменных, и тогда эта идея была равнозначна идее зависимости. Так, если X зависит от значения x и не зависит ни от какой другой изменяющейся величины, то принято X рассматривать как функцию от х; при этом обычно еще

      подразумевается, что X выводится из х при помощи ряда операций». СКАЧАТЬ