Global Drought and Flood. Группа авторов
Чтение книги онлайн.

Читать онлайн книгу Global Drought and Flood - Группа авторов страница 25

Название: Global Drought and Flood

Автор: Группа авторов

Издательство: John Wiley & Sons Limited

Жанр: География

Серия:

isbn: 9781119427216

isbn:

СКАЧАТЬ J. (2016). Assessment of two techniques to merge ground‐based and TRMM rainfall measurements: a case study about Brazilian Amazon Rainforest. GIScience and Remote Sensing, 53(6), 689–706.

      119 Mazdiyasni, O., & AghaKouchak, A. (2015). Substantial increase in concurrent droughts and heatwaves in the United States. Proceedings of the National Academy of Sciences, 112(37), 11484–11489.

      120 Mckee, T.B., Doesken, N.J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. American Meteorological Society 8th Conference on Applied Climatology (January, pp. 179–184). https://doi.org/citeulike‐article‐id:10490403

      121 McQuigg, J. (1954). A simple index of drought conditions. Weatherwise, 7(3), 64–67.

      122 McVicar, T.R., Roderick, M.L., Donohue, R.J., Li, L.T., Van Niel, T.G., Thomas, A., et al. (2012). Global review and synthesis of trends in observed terrestrial near‐surface wind speeds: Implications for evaporation. Journal of Hydrology, 416, 182–205.

      123 Mehran, A., AghaKouchak, A., & Phillips, T.J. (2014). Evaluation of CMIP5 continental precipitation simulations relative to satellite‐based gauge‐adjusted observations. Journal of Geophysical Research: Atmospheres, 119(4), 1695–1707.

      124 Meng, J., Li, L., Hao, Z., Wang, J., & Shao, Q. (2014). Suitability of TRMM satellite rainfall in driving a distributed hydrological model in the source region of Yellow River. Journal of Hydrology. 509, 320–332. https://doi.org/10.1016/j.jhydrol.2013.11.049

      125 Merlin, O., Malbéteau, Y., Notfi, Y., Bacon, S., Khabba, S.E.‐R. S., & Jarlan, L. (2015). Performance metrics for soil moisture downscaling methods: Application to DISPATCH data in central Morocco. Remote Sensing, 7(4), 3783–3807.

      126 Miralles, D.G., Teuling, A.J., Van Heerwaarden, C.C., & De Arellano, J.V.G. (2014). Mega‐heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nature Geoscience, 7(5), 345–349. https://doi.org/10.1038/ngeo2141

      127 Mishra, A.K., & Singh, V.P. (2010). A review of drought concepts. Journal of Hydrology, 391(1–2), 202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

      128 Mishra, A., Vu, T., Veettil, A. V., & Entekhabi, D. (2017). Drought monitoring with soil moisture active passive (SMAP) measurements. Journal of Hydrology, 552, 620–632.

      129 Mladenova, I.E., Bolten, J.D., Crow, W.T., Sazib, N., Cosh, M.H., Tucker, C.J., & Reynolds, C. (2019). Evaluating the operational application of SMAP for global agricultural drought monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(9), 3387–3397.

      130 Mo, K. C., & Lettenmaier, D. P. (2015). Heat wave flash droughts in decline. Geophysical Research Letters, 42(8), 2823–2829.

      131 Modaresi Rad, A., & Khalili, D. (2015). Appropriateness of clustered raingauge stations for spatio‐temporal meteorological drought applications. Water Resources Management, 29(11). https://doi.org/10.1007/s11269‐015‐1051‐6

      132 Modaresi Rad, A., Ghahraman, B., Khalili, D., Ghahremani, Z., & Ardakani, S.A. (2017). Integrated meteorological and hydrological drought model: A management tool for proactive water resources planning of semi‐arid regions. Advances in Water Resources, 107, 336–353. https://doi.org/10.1016/j.advwatres.2017.07.007

      133 Modaresi Rad, A., Khalili, D., Kamgar‐Haghighi, A.A., Zand‐Parsa, S., & Banimahd, S.A. (2016). Assessment of seasonal characteristics of streamflow droughts under semiarid conditions. Natural Hazards, 82(3). https://doi.org/10.1007/s11069‐016‐2256‐6

      134 Moftakhari, H.R., AghaKouchak, A., Sanders, B.F., & Matthew, R.A. (2017). Cumulative hazard: The case of nuisance flooding. Earth’s Future, 5(2), 214–223.

      135 Mohanty, S., Jha, M.K., Raul, S.K., Panda, R.K., & Sudheer, K.P. (2015). Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. Water Resources Management, 29(15), 5521–5532.

      136 Moradi, I., Arkin, P., Ferraro, R., Eriksson, P., & Fetzer, E. (2016). Diurnal variation of tropospheric relative humidity in tropical regions. Atmospheric Chemistry and Physics, 16, 6913–6929. https://doi.org/10.5194/acp‐16‐6913‐2016

      137 Moradkhani, H. (2008). Hydrologic remote sensing and land surface data assimilation. Sensors, 8(5), 2986–3004.

      138 Moran, M.S., Clarke, T.R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface‐air temperature and spectral vegetation index. Remote Sensing of Environment, 49(3), 246–263.

      139 Mote, P.W., Rupp, D.E., Li, S., Sharp, D.J., Otto, F., Uhe, P.F., et al. (2016). Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophysical Research Letters, 43(20), 10–980. https://doi.org/10.1002/2016GL069965

      140 Mu, Q., Zhao, M., Kimball, J.S., McDowell, N.G., & Running, S.W. (2013). A remotely sensed global terrestrial drought severity index. Bulletin of the American Meteorological Society, 94(1), 83–98.

      141 Mueller, B., & Seneviratne, S.I. (2012). Hot days induced by precipitation deficits at the global scale. Proceedings of the National Academy of Sciences, 109(31), 12398–12403. https://doi.org/10.1073/pnas.1204330109

      142 Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1–4), 69–88.

      143 Nasrollahi, N., Hsu, K., & Sorooshian, S. (2013). An artificial neural network model to reduce false alarms in satellite precipitation products using MODIS and CloudSat observations. Journal of Hydrometeorology, 14(6), 1872–1883.

      144 Njoku, E.G., Jackson, T.J., Lakshmi, V., Chan, T.K., & Nghiem, S.V. (2003). Soil moisture retrieval from AMSR‐E. IEEE Transactions on Geoscience and Remote Sensing, 41(2), 215–229.

      145 Núñez, M., Pfister, S., Roux, P., & Antón, A. (2013). Estimating water consumption of potential natural vegetation on global dry lands: Building an LCA framework for green water flows. Environmental Science and Technology, 47(21), 12258–12265.

      146 Oguntunde, P.G., Abiodun, B.J., & Lischeid, G. (2011). Rainfall trends in Nigeria, 1901–2000. Journal of Hydrology, 411(3–4), 207–218. https://doi.org/10.1016/j.jhydrol.2011.09.037

      147 Olagunju, T.E. (2015). Drought, desertification and the Nigerian environment: A review. Journal of Ecology and the Natural Environment, 7(7), 196–209.

      148 Otkin, J.A., Anderson, M.C., Hain, C., Svoboda, M., Johnson, D., Mueller, R., et al. (2016). Assessing the evolution of soil moisture and vegetation conditions during the 2012 United States flash drought. Agricultural СКАЧАТЬ