Название: Global Drought and Flood
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: География
isbn: 9781119427216
isbn:
54 Foster, J.L., Chang, A.T.C., & Hall, D.K. (1997). Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and a snow depth climatology. Remote Sensing of Environment, 62(2), 132–142.
55 Foster, J.L., Hall, D.K., Eylander, J.B., Riggs, G.A., Nghiem, S.V, Tedesco, M., et al. (2011). A blended global snow product using visible, passive microwave and scatterometer satellite data. International Journal of Remote Sensing, 32(5), 1371–1395.
56 Gebremichael, M. (2010). Framework for satellite rainfall product evaluation. Geophysical Monographs Series, 191, 265–275. https://doi.org/10.1029/2010GM000974
57 Glenn, E.P., Neale, C.M.U., Hunsaker, D.J., & Nagler, P.L. (2011). Vegetation index‐based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrological Processes, 25(26), 4050–4062.
58 Gober, P., Sampson, D.A., Quay, R., White, D.D., & Chow, W.T.L. (2016). Urban adaptation to mega‐drought: Anticipatory water modeling, policy, and planning for the urban Southwest. Sustainable Cities and Society, 27, 497–504.
59 Goulden, M. (2018). AmeriFlux US‐SCf Southern California Climate Gradient‐Oak/Pine Forest. AmeriFlux; University of California‐Irvine.
60 Griffin, D., & Anchukaitis, K.J. (2014). How unusual is the 2012–2014 California drought? Geophysical Research Letters, 41(24), 9017–9023.
61 Gruber, A., Scanlon, T., Schalie, R.V.D., Wagner, W., & Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth System Science Data, 11(2), 717–739.
62 Guan, B., Waliser, D.E., Molotch, N.P., Fetzer, E.J., & Neiman, P.J. (2012). Does the Madden–Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Monthly Weather Review, 140(2), 325–342.
63 Gupta, P., Christopher, S. A., Wang, J., Gehrig, R., Lee, Y., & Kumar, N. (2006). Satellite remote sensing of particulate matter and air quality assessment over global cities, 40, 5880–5892. https://doi.org/10.1016/j.atmosenv.2006.03.016
64 Hall, D.K., Riggs, G.A., Salomonson, V.V, DiGirolamo, N.E., & Bayr, K.J. (2002). MODIS snow‐cover products. Remote Sensing of Environment, 83(1–2), 181–194.
65 Han, K.S., Viau, A.A., Kim, Y.S., & Roujean, J.L. (2005). Statistical estimate of the hourly near‐surface air humidity in eastern Canada in merging NOAA/AVHRR and GOES/IMAGER observations. International Journal of Remote Sensing, 26(21), 4763–4784. doi:10.1080/01431160500177711.
66 Hao, Z., & AghaKouchak, A. (2013). Multivariate standardized drought index: a parametric multi‐index model. Advances in Water Resources, 57, 12–18.
67 Hao, Z., & AghaKouchak, A. (2014). A nonparametric multivariate multi‐index drought monitoring framework, Journal of Hydrometeorology, 15(1), 89–101. https://doi.org/10.1175/JHM‐D‐12‐0160.1
68 Hao, Z., AghaKouchak, A., Nakhjiri, N., & Farahmand, A. (2014). Global integrated drought monitoring and prediction system. Nature Scientific Data, 1, 140001.
69 Harpold, A.A., (2016). Diverging sensitivity of soil water stress to changing snowmelt timing in the western US. Advances in Water Resources, 92, 116–129.
70 Harpold, A.A., Dettinger, M., & Rajagopal S. (2017). Defining snow drought and why it matters, Eos, Transactions American Geophysical Union, 98, https://doi.org/10.1029/2017EO068775
71 Harpold, A.A., Molotch, N.P., Musselman, K.N., Bales, R.C., Kirchner, P.B., Litvak, M., & Brooks, P.D. (2014). Soil moisture response to snowmelt timing in mixed‐conifer subalpine forests. Hydrological Processes, 29(12), 2782–2798.
72 Hatchett, B.J., & McEvoy, D.J. (2018). Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interactions, 22(2), 1–3. https://doi.org/10.1175/EI‐D‐17‐0027.1
73 He, M., Hogue, T.S., Franz, K.J., Margulis, S.A., & Vrugt, J.A. (2011). Corruption of parameter behavior and regionalization by model and forcing data errors: A Bayesian example using the SNOW17 model. Water Resources Research, 47(7). https://doi.org/10.1029/2010WR009753
74 Hedrick, A.R., Marks, D., Havens, S., Robertson, M., Johnson, M., Sandusky, M., et al. (2018). Direct insertion of NASA Airborne Snow Observatory‐derived snow depth time series into the iSnobal energy balance snow model. Water Resources Research, 54(10), 8045–8063.
75 Hess, M., Koepke, P., & Schult, I. (1998). Optical properties of aerosols and clouds: The software package OPAC. Bulletin of the American Meteorological Society, 79(5), 831–844.
76 Hirschi, M., Seneviratne, S.I., Alexandrov, V., Boberg, F., Boroneant, C., Christensen, O.B., et al. (2011). Observational evidence for soil‐moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4(1), 17–21. https://doi.org/10.1038/ngeo1032
77 Hou, A.Y., Kakar, R.K., Neeck, S., Azarbarzin, A.A., Kummerow, C.D., Kojima, M., et al. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95(5), 701–722.
78 Howitt, R., Medellín‐Azuara, J., MacEwan, D., Lund, J.R., & Sumner, D. (2014). Economic analysis of the 2014 drought for California agriculture. Davis, CA: Center for Watershed Sciences University of California.
79 Hsu, K., Gao, X., Sorooshian, S., & Gupta, H.V. (1997). Precipitation estimation from remotely sensed information using artificial neural networks. Journal of Applied Meteorology, 36(9), 1176–1190.
80 Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., & Yoo, S.‐H. (2015). NASA global precipitation measurement (GPM) integrated multi‐satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Document, Version, 4, 30. Greenbelt. MD: NASA.
81 Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Wolff, D.B., Adler, R.F., Gu, G., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi‐global, multiyear, combined‐sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8(1), 38–55.
82 Hutchinson, C.F., & Herrmann, S.M. (2016). The scientific basis: Links between land degradation, drought and desertification. In P.M. Johnson, K. Mayrand (Eds.), Governing Global Desertification: Linking Environmental Degradation, Poverty and Participation (pp. 31–46). New York, Routledge.
83 Im, J., Park, S., Rhee, J., Baik, J., & Choi, M. (2016). Downscaling of AMSR‐E soil moisture with MODIS products using machine learning approaches. Environmental Earth Sciences, 75(15), 1120.
84 IPCC, 2007. Climate change 2007: the physical science basis. Agenda 6 (07), 333, Intergovernmental Panel on Climate Change, Geneva.
85 Jackson, R.D., Idso, S.B., Reginato, R.J., & Pinter Jr, P.J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, СКАЧАТЬ