Название: Global Drought and Flood
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: География
isbn: 9781119427216
isbn:
87 Joyce, R., & Arkin, P.A. (1997). Improved estimates of tropical and subtropical precipitation using the GOES precipitation index. Journal of Atmospheric and Oceanic Technology, 14(5), 997–1011.
88 Joyce, R.J., Janowiak, J.E., Arkin, P.A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3), 487–503.
89 Kalma, J.D., McVicar, T.R., & McCabe, M.F. (2008). Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surveys in Geophysics, 29(4–5), 421–469.
90 Kao, S., & Govindaraju, R.S. (2010). A copula‐based joint deficit index for droughts. Journal of Hydrology, 380(1–2), 121–134. https://doi.org/10.1016/j.jhydrol.2009.10.029
91 Keetch, J.J., & Byram, G.M. (1968). A drought index for forest fire control (Research Paper SE‐38, 35 pp.). Asheville, NC: U.S. Department of Agriculture, Forest Service, Southeastern Forest Experiment Station.
92 Kerr, Y.H., Waldteufel, P., Wigneron, J.P., Delwart, S., Cabot, F., Boutin, J., et al. (2010). The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proceedings of the IEEE, 98(5), 666–687.
93 Khajehei, S., Ahmadalipour, A., & Moradkhani, H. (2018). An effective post‐processing of the North American multi‐model ensemble (NMME) precipitation forecasts over the continental US. Climate Dynamics, 51(1–2), 457–472.
94 Khalili, D., Farnoud, T., Jamshidi, H., Kamgar‐Haghighi, A. A., & Zand‐Parsa, S. (2011). Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resources Management, 25(6), 1737–1757.
95 Khorshidi, M.S., Nikoo, M.R., Sadegh, M., & Nematollahi, B., (2019). A multi‐objective risk‐based game theoretic approach to reservoir operation policy in potential future drought condition. Water Resources Management, 33(6), 1999–2014.
96 Kidd, C., Bauer, P., Turk, J., Huffman, G.J., Joyce, R., Hsu, K.‐L., & Braithwaite, D. (2012). Intercomparison of high‐resolution precipitation products over northwest Europe. Journal of Hydrometeorology, 13(1), 67–83.
97 Knowles, J.F., Lestak, L.R., & Molotch, N.P. (2017). On the use of a snow aridity index to predict remotely sensed forest productivity in the presence of bark beetle disturbance. Water Resources Research, 53(6), 4891–4906.
98 Kogan, F.N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar‐orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655–668.
99 Kongoli, C., Romanov, P., & Ferraro, R. (2012). Snow cover monitoring from remote satellites: Possibilities for drought assessment. In B.D. Wardlow, M.C. Anderson, J.P. Verdin (Eds), Remote Sensing of Drought (pp. 359–384). Taylor & Francis.
100 Koster, R.D., Suarez, M.J., Ducharne, A., Stieglitz, M., & Kumar, P. (2000). A catchment‐based approach to modeling land surface processes in a general circulation model: 1. Model structure. Journal of Geophysical Research: Atmospheres, 105(D20), 24809–24822.
101 Kumar, S.V., Dirmeyer, P.A., Peters‐Lidard, C.D., Bindlish, R., & Bolten, J. (2018). Information theoretic evaluation of satellite soil moisture retrievals. Remote Sensing of Environment, 204, 392–400.
102 Kumar, S.V., Peters‐Lidard, C.D., Mocko, D.M., Reichle, R., Liu, Y., Arsenault, K., et al. (2014). Assimilation of remotely sensed soil moisture and snow depth retrievals for drought estimation. Journal of Hydrometeorology, 15, 2446–2469. doi:10.1175/JHM‐D‐13‐0132.1
103 Lambert, A., Read, W.G., Livesey, N.J., Santee, M.L., Manney, G.L., Froidevaux, L., et al. (2007). Validation of the Aura Microwave Limb Sounder middle atmosphere water vapor and nitrous oxide measurements. Journal of Geophysical Research: Atmospheres, 112(D24). https://doi.org/10.1029/2007JD008724
104 Leonard, M., Westra, S., Phatak, A., Lambert, M., van den Hurk, B., McInnes, K., et al. (2014). A compound event framework for understanding extreme impacts. Wiley Interdisciplinary Reviews: Climate Change, 5(1), 113–128.
105 Lettenmaier, D.P., Alsdorf, D., Dozier, J., Huffman, G.J., Pan, M., & Wood, E.F. (2015). Inroads of remote sensing into hydrologic science during the WRR era. Water Resources Research, 51(9), 7309–7342.
106 Li, B., & Rodell, M. (2015). Evaluation of a model‐based groundwater drought indicator in the conterminous U.S. Journal of Hydrology, 526, 78–88. https://doi.org/10.1016/j.jhydrol.2014.09.027
107 Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y., & Luce, C.H. (2016). A review of the relationships between drought and forest fire in the United States. Global Change Biology, 22(7), 2353–2369.
108 Lu, X., Wei, M., Tang, G., & Zhang, Y. (2018). Evaluation and correction of the TRMM 3B43V7 and GPM 3IMERGM satellite precipitation products by use of ground‐based data over Xinjiang, China. Environmental Earth Sciences, 77(5), 209.
109 Luthcke, S. B., Sabaka, T. J., Loomis, B. D., Arendt, A. A., McCarthy, J. J., & Camp, J. (2013). Antarctica, Greenland and Gulf of Alaska land‐ice evolution from an iterated GRACE global mascon solution. Journal of Glaciology, 59(216), 613–631.
110 Ma, M., Ren, L., Yuan, F., Jiang, S., Liu, Y., Kong, H., & Gong, L. (2014). A new standardized Palmer drought index for hydro‐meteorological use. Hydrological Processes, 28(23), 5645–5661. https://doi.org/10.1002/hyp.10063
111 Madadgar, S., & Moradkhani, H. (2014). Spatio‐temporal drought forecasting within Bayesian networks. Journal of Hydrology, 512, 134–146. https://doi.org/10.1016/j.jhydrol.2014.02.039
112 Madani, K., AghaKouchak, A., & Mirchi, A. (2016). Iran’s socio‐economic drought: challenges of a water‐bankrupt nation. Iranian Studies, 49(6), 997–1016.
113 Mallakpour, I., Sadegh, M., & AghaKouchak, A. (2018). A new normal for streamflow in California in a warming climate: Wetter wet seasons and drier dry seasons. Journal of Hydrology, 567, 203–211.
114 Margulis, S.A., Cortés, G., Girotto, M., & Durand, M. (2016). A Landsat‐era Sierra Nevada snow reanalysis (1985–2015). Journal of Hydrometeorology, 17, 1203–1221. https://doi.org/10.1175/JHM‐D‐15‐0177
115 Margulis, S.A., Wood, E.F., & Troch, P.A. (2006). The terrestrial water cycle: Modeling and data assimilation across catchment scales. Journal of Hydrometeorology, 7(3), 309–311.
116 Martínez‐Fernández, J., González‐Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero‐Jiménez, C.M. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277–286.
117 Massari, C., Brocca, L., Tarpanelli, A., & Moramarco, T. (2015) Data assimilation of satellite soil moisture into rainfall‐runoff modelling: A complex recipe?. Remote Sensing, 7(9), СКАЧАТЬ