Finite Element Analysis. Barna Szabó
Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 38

Название: Finite Element Analysis

Автор: Barna Szabó

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119426462

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#ulink_3790ac45-15d7-51ef-8346-e0dfc9c94371">(1.101)log left-parenthesis e Subscript r Baseline right-parenthesis Subscript upper E Baseline almost-equals log upper C minus beta log upper N period

      (1.102)beta Subscript i Baseline equals one half StartFraction log left-parenthesis pi Subscript i Baseline minus pi right-parenthesis minus log left-parenthesis pi Subscript i minus 1 Baseline minus pi right-parenthesis Over log upper N Subscript i minus 1 Baseline minus log upper N Subscript i Baseline EndFraction dot

      Examples

      The properties of the finite element solution with reference to a family of model problems is discussed in the following. The problems are stated as follows: Find u Subscript upper F upper E Baseline element-of upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis such that

      where κ and c are constants and upper F left-parenthesis v right-parenthesis is defined such that the exact solution is:

      As explained in Section 1.5.1, when α is not an integer, the case considered in the following, then this solution lies in the space upper H Superscript alpha plus 1 slash 2 minus epsilon Baseline left-parenthesis upper I right-parenthesis. Therefore the asymptotic rate of h‐convergence on uniform meshes, predicted by eq. (1.92), is beta equals alpha minus 1 slash 2 and the asymptotic rate of p‐convergence on a fixed mesh is beta equals 2 alpha minus 1.

      We selected this problem because it is representative of the singular part of the exact solutions of two‐and three‐dimensional elliptic boundary value problems.

      Referring to Theorem 1.3, we have upper B left-parenthesis u Subscript upper E upper X Baseline minus u Subscript upper F upper E Baseline comma v right-parenthesis equals 0 for all v element-of upper S Superscript 0 Baseline left-parenthesis upper I right-parenthesis therefore upper F left-parenthesis v right-parenthesis equals upper B left-parenthesis u Subscript upper E upper X Baseline comma v right-parenthesis. Consequently for the kth element the load vector in the local numbering convention is:

      where by definition phi Subscript i Baseline left-parenthesis upper Q Subscript k Baseline left-parenthesis xi right-parenthesis right-parenthesis equals upper N Subscript i Baseline left-parenthesis xi right-parenthesis.

integral Subscript x Subscript k Baseline Superscript x Subscript k plus 1 Baseline Baseline kappa u prime Subscript upper E upper X Baseline phi Subscript i Superscript prime Baseline d x equals left-parenthesis kappa u Subscript upper E upper X Baseline phi prime Subscript i right-parenthesis Subscript x Sub Subscript k Subscript Superscript x Super Subscript k plus 1 Superscript Baseline minus integral Subscript x Subscript k Baseline Superscript x Subscript k plus 1 Baseline Baseline kappa u Subscript upper E upper X Baseline phi Subscript i Superscript double-prime Baseline d x period

      Since phi double-prime Subscript i Baseline equals 0 for i equals 1 and i equals 2, we have:

StartLayout 1st Row 1st Column r 1 Superscript left-parenthesis k right-parenthesis Baseline equals 2nd Column minus StartFraction 1 Over script l Subscript k Baseline EndFraction left-parenthesis kappa u Subscript upper E upper X Baseline right-parenthesis Subscript x equals x Sub Subscript k plus 1 plus StartFraction 1 Over script l Subscript k Baseline EndFraction left-parenthesis kappa u Subscript upper E upper X Baseline right-parenthesis Subscript x equals x Sub Subscript k plus StartFraction script l Subscript k Baseline Over 2 EndFraction integral Subscript negative 1 Superscript 1 Baseline left-parenthesis c u Subscript upper E upper X Baseline right-parenthesis Subscript 
              <a href=СКАЧАТЬ