Finite Element Analysis. Barna Szabó
Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 34

Название: Finite Element Analysis

Автор: Barna Szabó

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119426462

isbn:

СКАЧАТЬ Overscript p minus 1 Endscripts upper N Subscript i plus 2 Baseline left-parenthesis xi overbar right-parenthesis StartRoot StartFraction 2 i plus 1 Over 2 EndFraction EndRoot integral Subscript negative 1 Superscript 1 Baseline upper P Subscript i Baseline left-parenthesis xi right-parenthesis left-parenthesis upper P 0 left-parenthesis xi right-parenthesis plus upper P 1 left-parenthesis xi right-parenthesis right-parenthesis d xi equals negative three thirty-seconds dot EndLayout"/>

      Taking the orthogonality of the Legendre polynomials (see eq. (D.13)) into account, the sum has to be evaluated only for p equals 2. The extracted value of u prime Subscript upper F upper E Baseline left-parenthesis 0 right-parenthesis for p greater-than-or-equal-to 2 is u prime Subscript upper F upper E Baseline left-parenthesis 0 right-parenthesis equals 0 period 5156 (31.25% error).

      An explanation of why the extraction method is much more efficient than direct computation is given in Section 1.5.4.

      Exercise 1.16 Find u prime Subscript upper F upper E Baseline left-parenthesis 0 right-parenthesis for the problem in Example 1.7 by the direct and indirect methods. Compute the relative errors.

      Exercise 1.17 For the problem in Example 1.9 let v equals 1 minus x cubed be the extraction function. Calculate the extracted value of u prime Subscript upper F upper E Baseline left-parenthesis 0 right-parenthesis for p greater-than-or-equal-to 3.

      Nodal forces

      The vector of nodal forces associated with element k, denoted by left-brace f Superscript left-parenthesis k right-parenthesis Baseline right-brace, is defined as follows:

      (1.88)left-brace f Superscript left-parenthesis k right-parenthesis Baseline right-brace equals left-bracket upper K Superscript left-parenthesis k right-parenthesis Baseline right-bracket left-brace a Superscript left-parenthesis k right-parenthesis Baseline right-brace minus left-brace r overbar Superscript left-parenthesis k right-parenthesis Baseline right-brace k equals 1 comma 2 comma ellipsis comma upper M left-parenthesis normal upper Delta right-parenthesis

      where left-bracket upper K Superscript left-parenthesis k right-parenthesis Baseline right-bracket is the stiffness matrix, left-brace a Superscript left-parenthesis k right-parenthesis Baseline right-brace is the solution vector and left-brace r overbar Superscript left-parenthesis k right-parenthesis Baseline right-brace is the load vector corresponding to traction forces, concentrated forces and thermal loads acting on element k.

      The sign convention for nodal forces is different from the sign convention for the bar force: Whereas the bar force is positive when tensile, a nodal force is positive when acting in the direction of the positive coordinate axis.

f 1 Superscript left-parenthesis k right-parenthesis Baseline plus f 2 Superscript left-parenthesis k right-parenthesis Baseline equals r 1 Superscript left-parenthesis k right-parenthesis Baseline plus r 2 Superscript left-parenthesis k right-parenthesis Geometric representation of exercise 1.8 and provide citation. Notation.

      There is a very substantial body of work in the mathematical literature on the a priori estimation of the rate of convergence, given a quantitative measure of the regularity of the exact solution and a sequence of discretizations. The underlying theory is outside of the scope of this book; however, understanding the main results is important for practitioners of finite element analysis. For details we refer to [28, 45, 70, 84].

      Let us consider problems the exact solution of which has the functional form

      where phi left-parenthesis x right-parenthesis is an analytic or piecewise analytic function, see Definition A.1 in the appendix. Our motivation for considering functions in this form is that this family of functions models the singular behavior of solutions of linear elliptic boundary value problems near vertices in polygonal and polyhedral domains. For u Subscript upper E upper X to be in the energy space, its first derivative must be square integrable on I. Therefore

СКАЧАТЬ