Finite Element Analysis. Barna Szabó
Чтение книги онлайн.

Читать онлайн книгу Finite Element Analysis - Barna Szabó страница 36

Название: Finite Element Analysis

Автор: Barna Szabó

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119426462

isbn:

СКАЧАТЬ results can be proven for three dimensions; however, no proofs are available at present.

      We will find it convenient to write the relative error in energy norm in the following form

      where N is the number of degrees of freedom and C and β are positive constants, β is called the algebraic rate of convergence. In one dimension upper N proportional-to 1 slash h for the h‐version and upper N proportional-to p for the p‐version. Therefore for k minus 1 less-than p we have beta equals k minus 1. However, for the important special case when the solution has the functional form of eq. (1.89) or, more generally, has a term like u equals StartAbsoluteValue x minus x 0 EndAbsoluteValue Superscript lamda and x 0 element-of upper I overbar is a nodal point then beta equals 2 left-parenthesis k minus 1 right-parenthesis for the p‐version: The rate of p‐convergence is twice that of h‐convergence [22, 84].

      where C, γ and θ are positive constants, independent of N. In one dimension theta greater-than-or-equal-to 1 slash 2, in two dimensions theta greater-than-or-equal-to 1 slash 3, in three dimensions theta greater-than-or-equal-to 1 slash 5, see [10].

      The relationship between the error e equals u Subscript upper E upper X Baseline minus u Subscript upper F upper E measured in energy norm and the error in potential energy is established by the following theorem.

      (1.94)double-vertical-bar e double-vertical-bar Subscript upper E Superscript 2 Baseline equals double-vertical-bar u Subscript upper E upper X Baseline minus u Subscript upper F upper E Baseline double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Superscript 2 Baseline equals pi left-parenthesis u Subscript upper F upper E Baseline right-parenthesis minus pi left-parenthesis u Subscript upper E upper X Baseline right-parenthesis period

      Proof: Writing e equals u Subscript upper E upper X Baseline minus u Subscript upper F upper E and noting that e element-of upper E Superscript 0 Baseline left-parenthesis upper I right-parenthesis, from the definition of pi left-parenthesis u Subscript upper F upper E Baseline right-parenthesis we have:

StartLayout 1st Row 1st Column pi left-parenthesis u Subscript upper F upper E Baseline right-parenthesis equals 2nd Column pi left-parenthesis u Subscript upper E upper X Baseline minus e right-parenthesis equals one half upper B left-parenthesis u Subscript upper E upper X Baseline minus e comma u Subscript upper E upper X Baseline minus e right-parenthesis minus upper F left-parenthesis u Subscript upper E upper X Baseline minus e right-parenthesis 2nd Row 1st Column equals 2nd Column one half upper B left-parenthesis u Subscript upper E upper X Baseline comma u Subscript upper E upper X Baseline right-parenthesis minus upper F left-parenthesis u Subscript upper E upper X Baseline right-parenthesis ModifyingBelow minus upper B left-parenthesis u Subscript upper E upper X Baseline comma e right-parenthesis plus upper F left-parenthesis e right-parenthesis With presentation form for vertical right-brace Underscript 0 Endscripts plus one half upper B left-parenthesis e comma e right-parenthesis 3rd Row 1st Column equals 2nd Column pi left-parenthesis u Subscript upper E upper X Baseline right-parenthesis plus double-vertical-bar e double-vertical-bar Subscript upper E left-parenthesis upper I right-parenthesis Superscript 2 Baseline period EndLayout

      Remark 1.10 Consider the problem given by eq. (1.5) and assume that κ and c are constants. In this case the smoothness of u depends only on the smoothness of f: If f element-of upper C Superscript k Baseline left-parenthesis upper I right-parenthesis then u element-of upper C Superscript k plus 2 Baseline left-parenthesis upper I right-parenthesis for any k greater-than-or-equal-to 0. Similarly, if f element-of upper H Superscript k Baseline left-parenthesis upper I right-parenthesis then u element-of upper H Superscript k plus 2 Baseline left-parenthesis upper I right-parenthesis for any k greater-than-or-equal-to 0. This is known as the shift theorem. More generally, the smoothness of u depends on the smoothness of κ, c and F. For a precise statement and proof of the shift theorem we refer to [21].

      Remark 1.11 An introductory discussion on how a priori estimates are obtained under the assumption that the second derivative of the exact solution is bounded can be found in Appendix B.

      1.5.3 A posteriori estimation of error

      The goal of finite element computations is to estimate certain quantities СКАЧАТЬ