Название: Liquid Biofuels
Автор: Группа авторов
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119793014
isbn:
40. Neshat, S.A., Mohammadi, M., Najafpour, G.D., Lahijani, P., Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production, Renewable and Sustainable Energy Reviews, 79, 308-322, 2017.
41. Ramos-Suarez, J.L., Ritter, A., Gonzalez, J.M., Perez, A.C., Biogas from animal manure: A sustainable energy opportunity in the Canary Islands, Renewable and Sustainable Energy Reviews, 104, 137-150, 2019.
42. Kalembkiewicz, J., Chmielarz, U., Ashes from co-combustion of coal and biomass: New industrial wastes, Resources, Conservation and Recycling, 69, 109-121, 2012.
43. Chong, M., Sabaratnam, V., Shirai, Y., Hassan, M.A., Biohydrogen production from biomass and industrial wastes by dark fermentation, International Journal of Hydrogen Energy, 34, 8, 3277-3287, 2009.
44. Elliott, D.C., Thermochemical Processing of Biomass: Conversion into Fuels, pp. 200-231, John Wiley & Sons Ltd, 2011.
45. Yokoyama, S., Matsumura, Y., The Asian Biomass Handbook, pp. 21-135, The Japan Institute of Energy, 2008.
46. Ibarra-Gonzalez, P., Rong, B., A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chinese Journal of Chemical Engineering, 27, 7, 1523-1535, 2019.
47. Ranzi, E., Cuoci, A., Faravelli, T., Frassoldati, A., Migliavacca, G., Pierucci, S., Sommariva, S., Chemical Kinetics of Biomass Pyrolysis, Energy & Fuels, 22, 4292-430, 2008.
48. Pourkarimi, S., Hallajisani, A., Alizadehdakhel, A., Nouralishahi, A., Biofuel production through micro and macroalgae pyrolysis - A review of pyrolysis methods and process parameters, Journal of Analytical and Applied Pyrolysis, 142, 104599, 2019.
49. Konwer, D., Taylor, S.E., Gordon, B.E., Otvos, J.W., Calvin, M., Liquid Fuels from Mesua ferrea L. Seed Oil, Journal of American Oil Chemists’ Society, 66, 2, 223-226, 1989.
50. Katikaneni, S.P.R., Adjaye, J.D., Bakhshi, N.N., Catalytic Conversion of Canola Oil to Fuels and Chemical Over Various Cracking Catalyst, Canadian Journal of Chemical Engineering, 73, 484-497, 1995.
51. Ravichand, A., Anandha, M., Sivakumar, V., Calophyllum oil-a potential Bioresource for biodiesel production, International Journal of Advanced Life Science, 10, 1, 2017.
52. Shen, Y., Zhang, N., Zhang, S., Catalytic pyrolysis of biomass with potassium compounds for Co-production of high-quality biofuels and pours carbons, Energy, 190, 116431, 2020.
53. Wang, S., Yuan, C., Essakkimutlu, S., Xu, L., Cao, B., Abomohra, A.E., Qian, L., Liu, L., Hu, Y., Catalytic pyrolysis of waste clay oil to produce high quality biofuel, Journal of Analytical and Applied Pyrolysis, 141, 104633, 2019.
54. Suriapparoa, D.V., Vinu, R., Shukla, A., Haldar, S., Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residue and waste plastics combined with catalytic upgradation, Bioresource Technology, 302, 122775, 2020.
55. Wang, W., Shi, Y., Cui, Y., Li, X., Catalytic fast pyrolysis of cellulose for increasing contents of furans and aromatics in biofuel production, Journal of Analytical and Applied Pyrolysis, 131, 93-100, 2018.
56. Sanahuja-Parejo, O., Veses, A., Navarro, M.V., Lopez, J.M., Murillo, R., Callen, M.S., Garcia, T., Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels, Energy Conversion and Management, 171, 1202-1212, 2018.
57. Bharath, G., Rambabu, K., Hai, A., Banat, F., Taher, H., Schmidt, J.E., Show, P.L., Catalytic hydrodeoxygenation of biomass-derived pyrolysis oil over alloyed biometallic Ni3Fe nanocatalyst for high-grade biofuel production, Energy Conversion and Management, 213, 112859, 2020.
58. Bridgwater, A.V., Bridge, S.A., A review of biomass pyrolysis and pyrolysis technologies, in: Biomass Pyrolysis Liquids Upgrading and Utilisation, Bridgwater, A.V., Grassi, G. (Ed.), pp. 11–92, Elsevier, 1991.
59. Bridgwater, A.V., Bridge, S.A., Biomass pyrolysis liquids upgrading a utilisation, in: Biomass Pyrolysis Liquids Upgrading and Utilisation, Bridgwater, A.V. and Grassi, G. (Ed.), pp. 299-311, Elsevier, 1991.
60. Bridgwater, A.V., Toft, A.J, Brammer, J.G., A Techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion, Renewable and Sustainable Energy Reviews, 6, 181-248, 2002.
61. Onarheim, K., Hannula, I., Solantausta, Y., Hydrogen enhanced biofuels for transpott via fast pyrolysis of biomass: A conceptual assessment, Energy, 199, 117337, 2020.
62. Casazza, A.A., Spennati, E., Converti, A., Burca, G., Production of carbon-based biofuels by pyrolysis of exhausted Arthrospira platensis biomass after protein or lipid recovery, Fuel Processing Tachnology, 201, 106336, 2020.
63. Lappas, A.A., Samolada, M.C., Iatridis, D.K., Voutetakis, S.S., Vasalos, I.A., Biomass pyrolysis in a circulating fluid bed reactor for the production of fuels and chemicals, Fuel, 81, 2087-8095, 2002.
64. Lee, K., Pyrolysis of municipal plastic wastes separated by difference of specific gravity, Journal of Analytical and Applied Pyrolysis, 79, 1-2, 362-367, 2007.
65. Ismail, T.M., Banks, S.W., Yang, Y., Yang, H., Chen, Y., Bridgwater, A.V., Ramzy, K., El-Salam, M.A., Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions, Fuel, 273, 118004, 2020.
66. Qi, F., Wright, M.M., A DEM modeling of biomass fast pyrolysis in a double auger reactor, International Journal of Heat and Mass Transfer, 150, 119308, 2020.
67. Makkawi, Y., Yu, X., Ocone, R., Parametric analysis of biomass fast pyrolysis in a downer fluidized bed reactor, Renewable Energy, 143, 1225-1234, 2019.
68. Park, H.C., Choi, H.S., Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction, Renewable Energy, 143, 1268-1284, 2019.
69. Ben-Iwo, J., Manovic, V., and Longhurst, P., Biomass resources and biofuels potential for the production of transportation fuels in Nigeria, Renewable and Sustainable Energy Reviews, 63, 172–192, 2016.
70. Basumatary, V., Saikia, R., Narzai, R., Bordoloi, N., Gogoi, L., Sur, D., Bhuyan, N., Kataki, R., Tea factory waste as a feedstock for thermo-chemical conversion to biofuel and biomaterial, materialstoday: PROCEEDİNGS, 5, 11, 2, 23413-23422, 2018.
71. Duan, P., Jin, B., Xu, Y., Yang, Y., Bai, X., Wang, F., Zhang, L., Miao, J., Thermochemical conversion of chlorella pyrenoidosa to liquid biofuels, Bioresource Technology, 133, 197-205, 2013.
72. Long, F., Zhai, Q., Liu, P., Cao, X., Jiang, X., Wang, F., Wei, L., Liu, C., Jiang, J., Xu, J., Catalytic conversion of triglycerides by metal-based catalysts and subsequent modification of molecular structure by ZSM-5 and Raney Ni for the production of high-value biofuel, Renewable Energy, 157, 1072-1080, 2020.
73. Bui, N.Q., Fongarland, P., Rataboul, F., Dartiguelongue, C., Charon, N., Vallee, C., Essayem, N., Controlled СКАЧАТЬ