Название: Vitamin D in Clinical Medicine
Автор: Группа авторов
Издательство: Ingram
Жанр: Биология
Серия: Frontiers of Hormone Research
isbn: 9783318063394
isbn:
When the ECF Ca is raised into the hypercalcemic range, the opposite sequence of events occurs, that is, PTH secretion is reduced due to the stimulation of the parathyroid CaSR, and renal 1,25(OH)2D production is decreased. In addition, the elevated Ca per se may stimulate the renal CaSR in the CTAL, thus inducing calciuria. Therefore, the effect of suppressing PTH release and 1,25(OH)2D synthesis and of stimulating renal CaSR results in reduced renal tubular Ca reabsorption, decreased skeletal Ca release, and decreased intestinal Ca absorption, resulting in the normalization of the elevated ECF Ca.
References
1Walser M: Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrate and protein in normal human plasma. J Clin Invest 1961;40:723–730.
2Parfitt A, Kleerekoper M: Clinical disorders of calcium, phosphorus and magnesium metabolism; in Maxwell M, Kleeman C (eds): Clinical Disorders of Fluid and Electrolyte Metabolism. New York, McGraw-Hill, 1980, p 947.
3Danks JA, Ho PM, Notini AJ, Katsis F, Hoffmann P, Kemp BE, Martin TJ, Zajac JD: Identification of a parathyroid hormone in the fish Fugu rubripes. J Bone Miner Res 2003;18:1326–1331.
4Gensure RC, Ponugoti B, Gunes Y, Papasani MR, Lanske B, Bastepe M, Rubin DA, Juppner H: Identification and characterization of two parathyroid hormone-like molecules in zebrafish. Endocrinology 2004;145:1634–1639.
5McManus JF, Davey RA, Maclean HE, Doust EA, Chiu WS, Sims NA, Bouxsein ML, Glatt V, Zajac JD, Danks JA: Intermittent Fugu parathyroid hormone 1 (1–34) is an anabolic bone agent in young male rats and osteopenic ovariectomized rats. Bone 2008;42:1164–1174.
6Divieti P, Geller AI, Suliman G, Juppner H, Bringhurst FR: Receptors specific for the carboxyl-terminal region of parathyroid hormone on bone-derived cells: determinants of ligand binding and bioactivity. Endocrinology 2005;146:1863–1870.
7Segre BV, D’Amour P, Potts JT: Metabolism of radioiodinated bovine parathyroid hormone in the rat. Endocrinology 1976;99:1645–1652.
8Zhang CX, Weber BV, Thammavong J, Grover TA, Wells DS: Identification of carboxyl-terminal peptide fragments of parathyroid hormone in human plasma at low-picomolar levels by mass spectrometry. Anal Chem 2006;78:1636–1643.
9D’Amour P: Acute and chronic regulation of circulating PTH: significance in health and in disease. Clin Biochem 2012;45:964–969.
10Hashizume Y, Waguri S, Watanabe T, Kominami E, Uchiyama Y: Cysteine proteinases in rat parathyroid cells with special reference to their correlation with parathyroid hormone (PTH) in storage granules. J Histochem Cytochem 1993;41:273–282.
11Berson SA, Yalow RS, Aurbach GD, Potts JT: Immunoassay of bovine and human parathyroid hormone. Proc Natl Acad Sci U S A 1963;49:613–617.
12Nussbaum SR, Zahradnik RJ, Lavigne JR, Brennan GL, Nozawa-Ung K, Kim LY, Keutmann HT, Wang CA, Potts JT Jr, Segre GV: Highly sensitive two-site immunoradiometric assay of parathyrin, and its clinical utility in evaluating patients with hypercalcemia. Clin Chem 1987;33:1364–1367.
13John MR, Goodman WG, Gao P, Cantor TL, Salusky IB, Juppner H: A novel immunoradiometric assay detects full-length human PTH but not amino-terminally truncated fragments: implications for PTH measurements in renal failure. J Clin Endocrinol Metab 1999;84:4287–4290.
14Inaba M, Nakatsuka K, Imanishi Y, Watanabe M, Mamiya Y, Ishimura E, Nishizawa Y: Technical and clinical characterization of the Bio-PTH (1–84) immunochemiluminometric assay and comparison with a second-generation assay for parathyroid hormone. Clin Chem 2004;50:385–390.
15Bikle DD: Vitamin D metabolism, mechanism of action, and clinical applications. Chem Biol 2014;21:319–329.
16Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts JT Jr, Anderson RR, Blank IH, Parrish JA, Elias P: Photosynthesis of previtamin D3 in human skin and the physiologic consequences. Science 1980;210:203–205.
17Heaney RP: Functional indices of vitamin D status and ramifications of vitamin D deficiency. Am J Clin Nutr 2004;80(6 suppl):1706S–1709S.
18Hewison M, Burke F, Evans KN, Lammas DA, Sansom DM, Liu P, Modlin RL, Adams JS: Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol 2007;103:316–321.
19Liang C, Cooke N: Vitamin D-binding protein; in Feldman D, Pike J, Glorieux F (eds): Vitamin D. San Diego, Elesevier Academic Press, 2005, pp 153–163.
20Willnow T, Nykjaer A, et al: Endocytic pathways for 25-(OH) vitamin D3; in Feldman D, Pike J, Glorieux F (eds): Vitamin D. San Diego, Elsevier Academic Press, 2005, pp 153–163.
21Haussler MR, Jurutka PW, Mizwicki M, Norman AW: Vitamin D receptor (VDR)-mediated actions of 1α,25(OH)2vitamin D3: genomic and non-genomic mechanisms. Best Pract Res Clin Endocrinol Metab 2011;25:543–559.
22Pike JW, Meyer MB: The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D(3). Endocrinol Metab Clin North Am 2010;39:255–269.
23Huhtakangas JA, Olivera CJ, Bishop JE, Zanello LP, Norman AW: The vitamin D receptor is present in caveolae-enriched plasma membranes and binds 1 alpha,25(OH)2-vitamin D3 in vivo and in vitro. Mol Endocrinol 2004;18:2660–2671.
24Hoenderop JG, Nilius B, Bindels RJ: Calcium absorption across epithelia. Physiol Rev 2005;85:373–422.
25van de Graaf SF, Boullart I, Hoenderop JG, Bindels RJ: Regulation of the epithelial Ca2+ channels TRPV5 and TRPV6 by 1alpha,25-dihydroxy Vitamin D3 and dietary Ca2+. J Steroid Biochem Mol Biol 2004;89–90:303–308.