Название: Vitamin D in Clinical Medicine
Автор: Группа авторов
Издательство: Ingram
Жанр: Биология
Серия: Frontiers of Hormone Research
isbn: 9783318063394
isbn:
27Abou-Samra AB, Juppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts JT Jr, et al: Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone-related peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci U S A 1992;89:2732–2736.
28Juppner H, Abou-Samra AB, Freeman M, Kong XF, Schipani E, Richards J, Kolakowski LF Jr, Hock J, Potts JT Jr, Kronenberg HM, et al: A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 1991;254:1024–1026.
29Hebert SC: Extracellular calcium-sensing receptor: implications for calcium and magnesium handling in the kidney. Kidney Int 1996;50:2129–2139.
30Kim S, Yamazaki M, Shevde NK, Pike JW: Transcriptional control of receptor activator of nuclear factor-kappaB ligand by the protein kinase A activator forskolin and the transmembrane glycoprotein 130-activating cytokine, oncostatin M, is exerted through multiple distal enhancers. Mol Endocrinol 2007;21:197–214.
31Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD, Nissenson RA: PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res 2004;19:235–244.
32Talmage DW, Talmage RV: Calcium homeostasis: how bone solubility relates to all aspects of bone physiology. J Musculoskelet Neuronal Interact 2007;7:108–112.
33Boyce BF, Xing L: Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 2008;473:139–146.
34Takahashi N, Udagawa N, Takami M, Suda T: Cells of bone: osteoclast generation; in Bilezikian J, Raisz L, Rodan G (eds): Principles of Bone Biology. San Diego, Academic Press, 2002, pp 109–126.
35Panda DK, Miao D, Bolivar I, Li J, Huo R, Hendy GN, Goltzman D: Inactivation of the 25-hydroxyvitamin D 1alpha-hydroxylase and vitamin D receptor demonstrates independent and interdependent effects of calcium and vitamin D on skeletal and mineral homeostasis. J Biol Chem 2004;279:16754–16766.
36Xue Y, Karaplis AC, Hendy GN, Goltzman D, Miao D: Exogenous 1,25-dihydroxyvitamin D3 exerts a skeletal anabolic effect and improves mineral ion homeostasis in mice that are homozygous for both the 1alpha-hydroxylase and parathyroid hormone null alleles. Endocrinology 2006;147:4801–4810.
37Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T: PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Renal Physiol 2010;299:F882-F889.
38Lewin E, Wang W, Olgaard K: Rapid recovery of plasma ionized calcium after acute induction of hypocalcaemia in parathyroidectomized and nephrectomized rats. Nephrol Dial Transplant 1999;14:604–609.
39Fraser DR, Kodicek E: Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nat New Biol 1973;241:163–166.
40Lieben L, Masuyama R, Torrekens S, Van Looveren R, Schrooten J, Baatsen P, Lafage-Proust MH, Dresselaers T, Feng JQ, Bonewald LF, Meyer MB, Pike JW, Bouillon R, Carmeliet G: Normocalcemia is maintained in mice under conditions of calcium malabsorption by vitamin D-induced inhibition of bone mineralization. J Clin Invest 2012;122:1803–1815.
41Nguyen-Yamamoto L, Karaplis AC, St-Arnaud R, Goltzman D: Fibroblast growth factor 23 regulation by systemic and local osteoblast-synthesized 1,25-dihydroxyvitamin D. J Am Soc Nephrol 2017;28:586–597.
42Bai XY, Miao D, Goltzman D, Karaplis AC: The autosomal dominant hypophosphatemic rickets R176Q mutation in fibroblast growth factor 23 resists proteolytic cleavage and enhances in vivo biological potency. J Biol Chem 2003;278:9843–9849.
43Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, Sirkis R, Naveh-Many T, Silver J: The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007;117:4003–4008.
44Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, Westin G, Larsson TE: Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol 2007;195:125–131.
Claudio Marcocci
Department of Clinical and Experimental Medicine, University of Pisa
via Paradisa 2
IT–56124 Pisa (Italy)
E-Mail [email protected]
Giustina A, Bilezikian JP (eds): Vitamin D in Clinical Medicine.
Front Horm Res. Basel, Karger, 2018, vol 50, pp 14–30 (DOI: 10.1159/000486062)
______________________
Daniel D. Bikle
VA Medical Center and University of California San Francisco, San Francisco, CA, USA
______________________
Abstract
The number of requests for vitamin D metabolite measurements has increased dramatically over the past decade leading commercial laboratories to develop rapid high throughput assays. The measurement of 25-hydroxyvitamin D (25[OH]D) and to a lesser extent 1,25-dihydroxyvitamin D (1,25[OH]2D) dominates these requests, but requests for multiple metabolite measurements in the same sample are also increasing. The most commonly used methods include immunoassays and liquid chromatography/mass spectrometry (LC-MS). Each method has its advantages and disadvantages, but with improvements in technology, especially in LC-MS, this method is gaining ascendance due to its greater precision and flexibility. The use of standards from the National Institutes of Standards and Technology has substantially reduced the variability from laboratory to laboratory, thereby improving the reliability of these measurements. Although the current demand is for measurement of total vitamin D metabolite levels, these metabolites circulate in blood tightly bound to vitamin D binding protein СКАЧАТЬ