Название: Человеческий риск (системные основы управления)
Автор: В. Б. Живетин
Жанр: Математика
Серия: Риски и безопасность человеческой деятельности
isbn: 978-5-986640-70-9, 978-5-905883-13-2
isbn:
6. Цель может достигаться при различных сочетаниях значений вектора x = (
, y, z) из области допустимых значений путем управления параметрами (у, z).7. Каждая динамическая система имеет область критических состояний Ωкр, в которой она теряет свои свойства и неспособна выполнять поставленные цели.
Все х
Ωкр обозначим через хкр. В результате потери, обусловленные невыполнением цели, связаны с выходом ограничиваемых параметров х в критическую область.8. Все те значения х, при которых динамическая система способна выполнять свое функциональное назначение, назовем допустимыми и обозначим хдоп. Все значения хдоп образуют некоторое открытое множество, которое обозначим Ωдоп.
9. Величина Δ1 = (хкр – хдоп) представляет собой запас на неблагоприятные сочетания случайных факторов, влияние которых на процесс функционирования динамической системы невозможно оценить в каждой конкретной ситуации.
10. Область допустимых состояний Ωдоп и соответствующие ей хдоп изменяются в процессе функционирования динамической системы и определяются экспериментально или теоретически [18].
11. Для предотвращения потерь и наилучшего достижения цели динамическая система имеет системы контроля и управления [17].
С помощью систем контроля, обладающих погрешностями, в процессе функционирования динамической системы вычисляют (строят) Ω*доп. При этом, как правило, Ωдоп не совпадает с Ω*доп за счет погрешностей функционирования систем контроля.
12. Человек для управления использует измеренные значения контролируемых параметров, которые обозначим хизм.
13. На выходе динамической системы реализуются текущие или фактические значения параметров, которые обозначим хф. При этом хизм = хф + δх, где δх – погрешность измерения – в общем случае случайный векторный процесс.
14. Фактические значения параметров хф в силу объективных причин, обусловленных внешними возмущениями и внутренними факторами риска (шумами), а также свойствами оператора-человека, изменяющимися случайным образом, представляют собой случайные процессы. На этапе проектирования динамической системы векторный процесс хф определяется с помощью математических моделей.
15. Для компенсации влияния δх на величину риска вводятся допустимые оценочные значения параметров хoдоп и соответствующая им область Ωoдоп
Ωдоп, т. е. вводится запас Δ = (хдоп – хoдоп). При контроле динамических процессов, когда скорость изменения процесса во времени ≠ 0, необходимо вводить дополнительный запас = k | . В результате имеем Ωoдоп СКАЧАТЬ