Intention. Lynne McTaggart
Чтение книги онлайн.

Читать онлайн книгу Intention - Lynne McTaggart страница 8

Название: Intention

Автор: Lynne McTaggart

Издательство: Bookwire

Жанр: Зарубежная психология

Серия:

isbn: 9783954840137

isbn:

СКАЧАТЬ auf. Eine Tasse heißer Kaffee kann nur kalt werden, wenn man ihn lange genug stehen lässt. Gegenstände gehen unweigerlich kaputt; alles bewegt sich nur in eine einzige Richtung, von der Ordnung zur Unordnung.

      Doch das muss nicht zwangsläufig so sein, glaubte Rosenbaum. Neuere Entdeckungen über ungeordnete Systeme legen nahe, dass bestimmte Materialien unter bestimmten Bedingungen den Entropiegesetzen widersprechen könnten und zusammenkommen, statt auseinanderzufallen. Konnte die Materie auch die umgekehrte Richtung einschlagen, von der Unordnung zu größerer Ordnung?

      Zehn Jahre lang hatten sich Rosenbaum und seine Studenten am James Franck Institute das in Bezug auf ein kleines Stück Lithium-Holmium-Fluor-Salz gefragt. In Rosenbaums Kältemaschine lag ein perfekter Splitter eines rosafarbigen Kristalls, nicht größer als eine Bleistiftspitze, in zwei Anordnungen von Kupferspulen eingehüllt. Im Laufe der Jahre und nach vielen Experimenten mit Spingläsern hatte Rosenbaum diese faszinierenden kleinen Exemplare sehr lieb gewonnen, sie gehören zu den Substanzen mit dem stärksten natürlichen Magnetismus auf der Erde. Diese Eigenschaft bot die besten Voraussetzungen, um Unordnung zu untersuchen – doch erst, wenn er den Kristall absolut unkenntlich gemacht hatte.

      Als Erstes hatte er sein Labor, das die Kristalle züchtete, angewiesen, Holmium mit Fluor und Lithium, dem ersten Metall im Periodensystem, zu verbinden. Das daraus resultierende Lithium-Holmium-Fluor-Salz „spielte mit“ und war vorhersagbar – eine höchst geordnete Substanz, deren Atome alle nach Norden zeigten, wie ein Meer mikroskopisch kleiner Kompasse. Rosenbaum hatte dann die ursprüngliche Salzzusammensetzung zerstört, indem er die Labormitarbeiter einzelne Holmiumatome nacheinander herauslösen und durch Yttrium ersetzen ließ – ein silbernes Metall ohne eine solche natürliche Magnetwirkung. Das betrieben sie so lange, bis ein eigentümlicher Hybrid einer Verbindung herauskam, ein Salz mit der Bezeichnung Lithium-Holmium-Yttrium-Tetrafluorid.

      Dadurch, dass Rosenbaum praktisch die Atome mit magnetischen Eigenschaften aus der Verbindung herausgelöst hatte, hatte er schließlich eine Spinglas-Anarchie herbeigeführt – die Atome dieses Frankensteinmonstrums zeigten, wohin sie wollten. Eine wesentliche Eigenschaft von Elementen wie Holmium manipulieren und so ungeniert bizarre neue Verbindungen herstellen zu können, das war ein wenig so, wie die Kontrolle über die Materie selbst zu haben. Mit diesen neuen Spinglas-Verbindungen konnte Rosenbaum praktisch die Eigenschaften der Verbindung nach Belieben variieren; er konnte Atome dazu bringen, sich nach einem bestimmten Muster auszurichten oder in einem zufälligen Muster zu erstarren.

      Doch seine Allmacht hatte auch Grenzen. Rosenbaums Holmiumverbindungen gehorchten in gewisser Hinsicht, in anderer jedoch nicht. Er konnte sie zum Beispiel nicht dazu bringen, sich an die Temperaturgesetze zu halten. Ganz egal, wie kalt Rosenbaum seine Kältemaschine einstellte, die Atome widersetzten sich jeglicher geordneten Orientierung, wie eine Armee, die sich weigert, im Gleichschritt zu marschieren. Wenn Rosenbaum mit seinen Spingläsern Gott spielte, so waren die Kristalle Adam, der sich hartnäckig weigerte, Gottes oberstem Gesetz zu gehorchen.

      Eine junge Studentin namens Sayantani Ghosh, eine seiner „Stardoktorandinnen“, teilte Rosenbaums Neugier auf die seltsame Eigenschaft der Kristallverbindung. Sai, wie ihre Freunde sie nannten, eine gebürtige Inderin, hatte mit hervorragenden Noten in Cambridge ihren Abschluss gemacht und wollte 1999 in Tom Rosenbaums Labor promovieren. Praktisch sofort hatte sie sich profiliert, indem sie den Gregor-Wentzel-Preis gewann, den die physikalische Fakultät der University of Chicago jährlich an die besten Studenten im ersten Jahr des Promotionsstudiums vergibt, die auch studentische Hilfskräfte sind. Die schlanke 23-Jährige, die auf den ersten Blick verlegen wirkte und sich hinter ihren vollen dunklen Haaren versteckte, hatte ihre Kommilitonen und Dozenten gleichermaßen rasch durch ihre kühne Autorität beeindruckt, die bei Studenten der Naturwissenschaften selten ist, und durch ihre Fähigkeit, komplexe Ideen so darzustellen, dass auch ein Student ohne Abschluss sie verstehen konnte. Seit seiner Einführung 25 Jahre zuvor hatte vor Sai erst eine einzige Frau diesen begehrten Preis gewonnen.

      Nach den Gesetzen der klassischen Physik bringt ein Magnetfeld die magnetische Ausrichtung der Atome in einer Substanz durcheinander. Den Grad, in dem das geschieht, bezeichnet man als „magnetische Suszeptibilität“. Bei einer ungeordneten Substanz tritt gewöhnlich folgendes Muster auf: Die Substanz richtet sich eine Zeitlang nach dem Magnetfeld aus, pendelt sich ein und lässt dann wieder nach, wenn die Temperatur sinkt oder eine magnetische Sättigung der Substanz erreicht ist. Dann können sich die Atome nicht mehr nach dem Magnetfeld ausrichten und bewegen sich deshalb langsamer.

      Bei Sais ersten Experimenten reagierten die Atome im Lithium-Holmium-Yttrium-Salz, wie vorhergesagt, ganz aufgeregt auf das Magnetfeld. Doch als sie das Feld verstärkte, geschah etwas Merkwürdiges. Je weiter sie die Frequenz erhöhte, desto schneller drehten sich die Atome. Und, was noch erstaunlicher war, alle Atome, die sich in einem ungeordneten Zustand befanden, begannen die gleiche Ausrichtung aufzuweisen und als kollektives Ganzes zu agieren. Dann richteten sich kleine Gruppen von ungefähr 260 Atomen aus, bildeten „Schwingkreise“, die gemeinsam in die eine oder andere Richtung schwangen. Ganz egal wie stark das Magnetfeld war, das Sai einsetzte, die Atome blieben stur miteinander ausgerichtet und zogen sozusagen „an einem Strang“. Diese Selbststeuerung hielt etwa zehn Sekunden lang an.

      Zuerst dachten Sai und Rosenbaum, diese Effekte hingen mit der seltsamen Wirkung der noch vorhandenen Holmiumatome zusammen; denn sie sind als eine der wenigen Substanzen auf der Welt bekannt für so lange anhaltende innere Kräfte, dass Holmium mancherorts als etwas beschrieben und mathematisch dargestellt wird, das in einer anderen Dimension existiert.2 Wenngleich sie das Phänomen, das sie beobachtet hatten, noch nicht verstanden, schrieben sie ihre Ergebnisse nieder und veröffentlichten sie 2002 in der Zeitschrift Science.3

      Rosenbaum beschloss, ein anderes Experiment durchzuführen, um das Wesensmerkmal des Kristalls zu isolieren, aufgrund dessen dieser so starken äußeren Einflüssen widerstehen konnte. Die Versuchsanordnung überließ er seiner gescheiten jungen Doktorandin; er schlug lediglich vor, dass sie das geplante Experiment dreidimensional mathematisch am Computer simuliere. Bei Versuchen mit so winziger Materie müssen sich Physiker auf Computersimulationen stützen, um die Reaktionen, die sie im Experiment beobachten, mathematisch zu bestätigen.

      Sai entwickelte monatelang das Computerprogramm und erstellte ihre Simulation. Man wollte etwas mehr über die Magnetfähigkeit des Salzes herausfinden, indem man den Kristallsplitter zwei Arten von Störungen aussetzte: höheren Temperaturen und einem stärkeren Magnetfeld.

      Sie bereitete die Probe vor, indem sie den Kristallsplitter auf einem kleinen, circa 3 mal 5 cm großen Kupferhalter befestigte und dann den winzigen Kristall mit zwei Spulen umwickelte: Die eine war ein Neigungsmesser, der die magnetische Suszeptibilität und die Spinrichtung der einzelnen Atome messen sollte, die andere sollte jeglichen zufälligen Einfluss auf die Atome im Inneren ausschließen.

      Mithilfe einer Verbindung zu ihrem PC konnte sie die Voltzahl ändern sowie das Magnetfeld oder die Temperatur und auch alle Änderungen aufzeichnen, wann immer sie eine Variable auch nur im Geringsten variierte.

      Sie begann die Temperatur zu reduzieren, jeweils um den Bruchteil eines Grades, und dann das Magnetfeld zu verstärken. Zu ihrem Erstaunen richteten sich die Atome zunehmend aneinander aus. Dann erhöhte sie die Temperatur und entdeckte, dass sie sich erneut ausrichteten. Egal was sie tat, bei jedem Vorgang ignorierten die Atome die Eingriffe von außen. Obwohl sie mit Tom Rosenbaum die meisten magnetischen Komponenten der Verbindung herausgelöst hatte, wurde diese von selbst zu einem immer größeren Magneten.

      Das ist komisch, dachte sie. Und: Vielleicht sollte ich mehr Daten sammeln, um sicherzustellen, dass wir nicht auf etwas Fremdes im System gestoßen sind?

      Sie wiederholte ihr Experiment über sechs Monate lang bis zum Frühling 2002, dann war ihre Computersimulation vollständig. Eines Abends stellte sie die Ergebnisse der Simulation in einem Diagramm СКАЧАТЬ