Wind Energy Handbook. Michael Barton Graham
Чтение книги онлайн.

Читать онлайн книгу Wind Energy Handbook - Michael Barton Graham страница 64

Название: Wind Energy Handbook

Автор: Michael Barton Graham

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119451167

isbn:

СКАЧАТЬ a prime lamda mu right-parenthesis squared EndFraction"/>

StartFraction left-parenthesis 1 minus a right-parenthesis lamda mu a prime Over a left-parenthesis 1 minus a right-parenthesis plus left-parenthesis a prime lamda mu right-parenthesis squared EndFraction equals StartStartFraction left-parenthesis 1 minus StartFraction a Over f EndFraction right-parenthesis OverOver lamda mu left-parenthesis 1 plus StartFraction a prime Over f EndFraction right-parenthesis EndEndFraction

      which becomes

      As before, Eq. (3.60) still applies, StartFraction italic d a Over italic d a prime EndFraction equals StartFraction 1 minus a Over a prime EndFraction

      Consequently,

left-parenthesis 1 minus a right-parenthesis left-parenthesis 1 minus 2 StartFraction a Over f EndFraction right-parenthesis equals lamda squared mu squared a prime

      which, combined with Eq. (3.89), gives

a squared minus two thirds left-parenthesis f plus 1 right-parenthesis a plus one third f equals 0

      so

Graph depicts the axial flow factor variation with radius for a three blade turbine optimised for a tip speed ratio of 6.

      Clearly, the required blade design for optimal operation would be a little different to that which corresponds to the Prandtl tip‐loss factor because ab = StartFraction a Over f EndFraction; the local flow factor does not fall to zero at the blade tip. The use of the Prandtl tip‐loss factor leads to an approximation, but that was recognised from the outset.

mu sigma Subscript r Baseline lamda upper C Subscript l Baseline equals StartFraction 4 lamda squared mu squared a prime Over StartRoot left-parenthesis 1 minus StartFraction a Over f EndFraction right-parenthesis squared plus left-bracket lamda mu left-parenthesis 1 plus StartFraction a prime Over f EndFraction right-parenthesis right-bracket squared EndRoot EndFraction left-parenthesis StartStartFraction 1 minus a OverOver 1 minus StartFraction a Over f EndFraction EndEndFraction right-parenthesis

      Introducing Eq. (3.89) gives

      (3.92)tangent phi equals StartStartStartFraction 1 minus StartFraction a Over f EndFraction OverOverOver lamda mu left-parenthesis 1 plus StartStartFraction a left-parenthesis 1 minus StartFraction a Over f EndFraction right-parenthesis OverOver lamda squared mu squared f EndEndFraction right-parenthesis EndEndEndFraction

      Again, the effects of tip‐loss are confined to the blade СКАЧАТЬ