Wind Energy Handbook. Michael Barton Graham
Чтение книги онлайн.

Читать онлайн книгу Wind Energy Handbook - Michael Barton Graham страница 63

Название: Wind Energy Handbook

Автор: Michael Barton Graham

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119451167

isbn:

СКАЧАТЬ target="_blank" rel="nofollow" href="#ulink_3cadcdf3-6b5c-532f-b5db-d9173a9024f8">Figure 3.34 Spanwise variation of blade circulation for a three blade turbine optimised for a tip speed ratio of 6.

      Therefore,

      (3.83)StartFraction upper Gamma left-parenthesis r right-parenthesis Over upper U Subscript infinity Baseline upper R EndFraction equals StartFraction 4 pi Over lamda left-parenthesis 1 minus a Subscript b Baseline left-parenthesis r right-parenthesis right-parenthesis EndFraction ModifyingAbove a With bar left-parenthesis normal r right-parenthesis left-parenthesis 1 minus ModifyingAbove a With bar left-parenthesis normal r right-parenthesis right-parenthesis left-parenthesis 1 minus a Subscript b Baseline left-parenthesis r right-parenthesis right-parenthesis

      The Prandtl tip‐loss factor that is widely used in industry codes appears to offer an acceptable, simple solution to a complex problem; not only does it account for the effects of discrete blades, it also allows the induction factors to fall to zero at the edge of the rotor disc.

      A more recently derived tip‐loss factor that has been calibrated against experimental data and appears to give improved performance was given by Shen et al. (2005). The spanwise distribution of axial and tangential forces is multiplied by the factor

      upper F 1 left-parenthesis r right-parenthesis equals StartFraction 2 Over pi EndFraction cosine Superscript negative 1 Baseline left-brace exp left-parenthesis minus g 1 StartFraction upper B left-parenthesis upper R minus r right-parenthesis Over 2 italic rsin left-parenthesis phi left-parenthesis r right-parenthesis right-parenthesis EndFraction right-parenthesis right-brace where g1 = 0.1 + exp.{−c1(Bλ‐c2)} with c1 = 0.125 and c2 = 21.0.

      This formulation is similar to Glauert's (1935a) original simplification of the Prandtl tip‐loss correction but introduces a variable factor g1 rather than unity. Wimshurst and Willden (2018) suggest that a better fit is given in the above by using different constants for the axial force correction (c1 ∼ 0.122 and c2 ∼ 21.5) and for the tangential force correction to be similarly defined but with (c1 ∼ 0.1 and c2 ∼ 13.0).

      3.9.4 Blade root losses

Graph depicts Spanwise variation of combined tip/root loss factor for a three blade turbine optimised for a tip speed ratio of 6 and with a blade root at 20% span.

      (3.84)f Subscript upper R Baseline left-parenthesis mu right-parenthesis equals StartFraction 2 Over pi EndFraction cosine Superscript negative 1 Baseline left-brace e Superscript minus StartFraction upper B left-parenthesis mu minus mu Super Subscript upper R Superscript right-parenthesis Over 2 mu EndFraction StartRoot 1 plus StartFraction left-parenthesis lamda mu right-parenthesis squared Over left-parenthesis 1 minus a overbar right-parenthesis squared EndFraction EndRoot Baseline right-brace

      If Eq. (3.82) is now termed fT(r) the complete tip/root loss factor is

      (3.85)f left-parenthesis mu right-parenthesis equals f Subscript upper T Baseline left-parenthesis mu right-parenthesis f Subscript upper R Baseline left-parenthesis mu right-parenthesis

      3.9.5 Effect of tip‐loss on optimum blade design and power

      With no tip‐loss the optimum axial flow induction factor is uniformly 1/3 over the whole swept rotor. The presence of tip‐loss changes the optimum value of the average value of a, which reduces to zero at the edge of the wake but local to the blade tends to increase in the tip region.

      For the analysis involving induction factors from here on in this chapter, only the azimuthal averages and the local values at the blade are required so it is convenient to use a(r) and a′(r) to mean azimuthal averages at radius r with ab = StartFraction a left-parenthesis r right-parenthesis Over f left-parenthesis r right-parenthesis EndFraction and ab = StartFraction a prime left-parenthesis r right-parenthesis Over f left-parenthesis r right-parenthesis EndFraction for the local values at the blade, thus avoiding the need for the overbar and subscript b notation in the algebraic expressions. The inflow angle ϕ at the blade is from Eq. (3.62):

      (3.86)tangent phi equals StartFraction 1 Over lamda mu EndFraction left-parenthesis StartStartFraction 1 minus StartFraction a Over f EndFraction OverOver 1 plus StartFraction a prime Over f EndFraction EndEndFraction right-parenthesis

      but Eq. (3.61) derives tan ϕ from the ratio of the non‐dimensional rate of change of angular momentum to the non‐dimensional rate of change of axial momentum, which is not changed because it deals with the average flow through the disc and so uses average values. If drag is ignored for the present, Eq. (3.62) becomes

      (3.87)tangent phi equals StartFraction lamda mu a prime left-parenthesis 1 minus a right-parenthesis Over a left-parenthesis 1 minus a right-parenthesis plus left-parenthesis 
              <a href=СКАЧАТЬ