Wind Energy Handbook. Michael Barton Graham
Чтение книги онлайн.

Читать онлайн книгу Wind Energy Handbook - Michael Barton Graham страница 61

Название: Wind Energy Handbook

Автор: Michael Barton Graham

Издательство: John Wiley & Sons Limited

Жанр: Физика

Серия:

isbn: 9781119451167

isbn:

СКАЧАТЬ alt="a prime Subscript b"/> that have been calculated by the uncorrected BEM method. Because the blade circulation must similarly fall to zero at the root of the blade, a similar ‘tip‐loss’ factor is applied there in the same way.

Graph depicts Spanwise variation of power extraction in the presence of tip-loss for a blade with uniform circulation on a three blade turbine operating at a tip speed ratio of 6.

      If the circulation varies along the blade span, vorticity is shed into the wake in a continuous fashion from the trailing edge of all sections where the spanwise (radial) gradient of circulation is non‐zero.

      The azimuthally averaged value of a overbar can be expressed as ab(r).f(r), where f(r) is known as the tip‐loss factor, has a value of unity inboard, and falls to zero at the edge of the rotor disc.

Schematic illustration of a (discretised) helicoidal vortex sheet wake for a two bladed rotor whose blades have radially varying circulation.

      The mass flow rate through an annulus = ρU(1 – a overbar (r)).2πrδr.

      The azimuthally averaged overall change of axial velocity = 2a overbar(r).U.

      The rate of change of axial momentum = 4πρU2(1 – a overbar(r)).a overbar(r)δr.

      The blade element forces are one half rho upper W squared italic upper B c upper C Subscript l and one half rho upper W squared italic upper B c upper C Subscript d, where W and Cl are determined using ab(r).

      The torque caused by the rotation of the wake is also calculated using an azimuthally averaged value of the tangential flow induction factor 2a overbar prime(r) with tip‐loss similarly applied for the value at a blade because both induction velocities are induced by the same distribution of shed vorticity.

      3.9.3 Prandtl's approximation for the tip‐loss factor

      The function for the tip‐loss factor f(r) is shown in Figure 3.29 for a blade with uniform circulation operating at a tip speed ratio of 6 and is not readily obtained by analytical means for any desired tip speed ratio. Sidney Goldstein (1929) did analyse the tip‐loss problem for application to propellers and achieved a solution in terms of Bessel functions, but neither that nor the vortex method with the Biot–Savart solution used above is suitable for inclusion in the BEM theory. Fortunately, in 1919, Ludwig Prandtl, reported by Betz (1919), had already developed an ingenious approximate solution that does yield a relatively simple analytical formula for the tip‐loss function.