Название: Wind Energy Handbook
Автор: Michael Barton Graham
Издательство: John Wiley & Sons Limited
Жанр: Физика
isbn: 9781119451167
isbn:
Assuming the flow speed to be at low Mach number M (typically M < 0.3 is sufficient), it may be treated as incompressible (ρ∞ = ρD) and to be independent of buoyancy effects (ρgh∞ = ρghD) then,
(3.5c)
Similarly, downstream,
(3.5d)
Subtracting these equations, we obtain
(3.6)
Equation (3.4) then gives
(3.7)
and so,
(3.8)
That is, half the axial speed loss in the streamtube takes place upstream of the actuator disc and half downstream.
3.2.2 Power coefficient
The force on the air becomes, from Eq. (3.4),
As this force is concentrated at the actuator disc, the rate of work done by the force is TUD and hence the power extraction from the air is given by
A power coefficient is then defined as
(3.11)
where the denominator represents the power available in the air, in the absence of the actuator disc.Therefore,
(3.12)
3.2.3 The Betz limit
(This limit is also referred to as the Lanchester–Betz limit or the Betz–Joukowski limit).1
The maximum value of CP occurs when
that gives a value of
Hence,
(3.13)
The maximum achievable value of the power coefficient is known as the Betz limit after Albert Betz (1919), the German aerodynamicist. Frederic Lanchester (1915), a British aeronautical pioneer, worked earlier on a similar analysis and is sometimes given prior credit, and Joukowski (1920) also contributed an analysis. To date, no unducted wind turbine has been designed that is capable of exceeding the Betz limit. The limit is caused not by any deficiency in design because, as yet in our discussion, we have no design. However, because the streamtube has to expand upstream of the actuator disc, the cross‐section of the tube where the air is at the full, free‐stream velocity is smaller than the area of the disc.
The efficiency of the rotor might more properly be defined as
(3.14)
but note that CP is not the same as this efficiency.
3.2.4 The thrust coefficient
The force on the actuator disc caused by the pressure drop, given by Eq. (3.9), can also be non‐dimensionalised to give a coefficient of thrust CT
(3.15)