Название: Эта странная математика. На краю бесконечности и за ним
Автор: Дэвид Дарлинг
Издательство: Corpus (АСТ)
Жанр: Математика
Серия: Элементы 2.0
isbn: 978-5-17-119879-4
isbn:
Особенно интересно различия между байесовским и частотным подходами проявляются, когда их применяют к математическим понятиям. К примеру, спросим себя, является ли септиллионным знаком числа пи (на сегодня неизвестным) пятерка? Заранее знать ответ невозможно, но после того, как он будет вычислен, он уже никогда не изменится: сколько ни повторяй расчет числа пи, ответ будет всегда один и тот же. Если следовать частотной интерпретации, вероятность того, что септиллионный знак будет пятеркой, равна либо 1 (достоверное событие), либо 0 (невозможное) – другими словами, это или пятерка, или нет. Допустим, доказано, что число пи нормально, то есть мы точно знаем, что в составляющей его бесконечной цепочке знаков каждая из десяти цифр имеет одинаковую плотность распределения. Согласно байесовской интерпретации, отражающей нашу степень уверенности в том, что септиллионным знаком является именно пятерка, вероятность этого – 0,1 (ведь если число пи нормально, то любой его знак, пока он не вычислен, может с одинаковой вероятностью быть любой цифрой от 0 до 9). Но вот после того, как мы этот знак вычислим (если такое когда-нибудь произойдет), вероятность уже точно будет либо 1, либо 0. Фактическое значение септиллионного знака пи нисколько не поменяется, но вероятность того, что это пятерка, изменится – именно потому, что у нас будет больше информации. Информация играет определяющую роль в байесовском подходе: по мере повышения собственной информированности мы можем корректировать значение вероятности, делая его точнее. А при наличии полной информации (скажем, когда определенный знак числа пи вычислен) значения частотной и байесовской вероятности становятся одинаковыми – если мы возьмемся заново рассчитать уже вычисленный знак пи, ответ нам будет известен заранее. Зная все нюансы физической системы (в том числе некоторый элемент случайности, как, например, при распаде атомов радия), мы можем в точности повторить эксперимент и получить частотную вероятность, идеально совпадающую с байесовской.
И хотя байесовский подход кажется субъективным, он может СКАЧАТЬ