Название: Essays: Scientific, Political, & Speculative (Vol. 1-3)
Автор: Spencer Herbert
Издательство: Bookwire
Жанр: Математика
isbn: 4064066389857
isbn:
Respecting Saturn's rings it may be further remarked that the place of their occurrence is not without significance.
Rings detached early in the process of concentration, consisting of gaseous matter having extremely little power of cohesion, can have little ability to resist the disruptive forces due to imperfect balance; and, therefore, collapse into satellites. A ring of a denser kind, whether solid, liquid, or composed of small discrete masses (as Saturn's rings are now concluded to be), we can expect will be formed only near the body of a planet when it has reached so late a stage of concentration that its equatorial portions contain matters capable of easy precipitation into liquid and, finally, solid forms. Even then it can be produced only under special conditions. Gaining a rapidly-increasing preponderance as the gravitative force does during the closing stages of concentration, the centrifugal force cannot, in ordinary cases, cause the leaving behind of rings when the mass has become dense. Only where the centrifugal force has all along been very great, and remains powerful to the last, as in Saturn, can we expect dense rings to be formed.
We find, then, that besides those most conspicuous peculiarities of the Solar System which first suggested the theory of its evolution, there are many minor ones pointing in the same direction. Were there no other evidence, these mechanical arrangements would, considered in their totality, go far to establish the Nebular Hypothesis.
From the mechanical arrangements of the Solar System, turn we now to its physical characters; and, first, let us consider the inferences deducible from relative specific gravities.
The fact that, speaking generally, the denser planets are the nearer to the Sun, has been by some considered as adding another to the many indications of nebular origin. Legitimately assuming that the outermost parts of a rotating nebulous spheroid, in its earlier stages of concentration, must be comparatively rare; and that the increasing density which the whole mass acquires as it contracts, must hold of the outermost parts as well as the rest; it is argued that the rings successively detached will be more and more dense, and will form planets of higher and higher specific gravities. But passing over other objections, this explanation is quite inadequate to account for the facts. Using the Earth as a standard of comparison, the relative densities run thus:—
Neptune | Uranus. | Saturn. | Jupiter. | Mars. | Earth. | Venus. | Mercury. | Sun. |
0·17 | 0·25 | 0·11 | 0·23 | 0·45 | 1·00 | 0·92 | 1·26 | 0·25 |
Two insurmountable objections are presented by this series. The first is, that the progression is but a broken one. Neptune is denser than Saturn, which, by the hypothesis, it ought not to be. Uranus is denser than Jupiter, which it ought not to be. Uranus is denser than Saturn, and the Earth is denser than Venus—facts which not only give no countenance to, but directly contradict, the alleged explanation. The second objection, still more manifestly fatal, is the low specific gravity of the Sun. If, when the matter of the Sun filled the orbit of Mercury, its state of aggregation was such that the detached ring formed a planet having a specific gravity equal to that of iron; then the Sun itself, now that it has concentrated, should have a specific gravity much greater than that of iron; whereas its specific gravity is only half as much again as that of water. Instead of being far denser than the nearest planet, it is but one-fifth as dense.
While these anomalies render untenable the position that the relative specific gravities of the planets are direct indications of nebular condensation; it by no means follows that they negative it. Several causes may be assigned for these unlikenesses:—1. Differences among the planets in respect of the elementary substances composing them; or in the proportions of such elementary substances, if they contain the same kinds. 2. Differences among them in respect of the quantities of matter they contain; for, other things equal, the mutual gravitation of molecules will make a larger mass denser than a smaller. 3. Differences of temperatures; for, other things equal, those having higher temperatures will have lower specific gravities. 4. Differences of physical states, as being gaseous, liquid, or solid; or, otherwise, differences in the relative amounts of the solid, liquid, and gaseous matter they contain.
It is quite possible, and we may indeed say probable, that all these causes come into play, and that they take various shares in the production of the several results. But difficulties stand in the way of definite conclusions. Nevertheless, if we revert to the hypothesis of nebular genesis, we are furnished with partial explanations if nothing more.
In the cooling of celestial bodies several factors are concerned. The first and simplest is the one illustrated at every fire-side by the rapid blackening of little cinders which fall into the ashes, in contrast with the long-continued redness of big lumps. This factor is the relation between increase of surface and increase of content: surfaces, in similar bodies, increasing as the squares of the dimensions while contents increase as their cubes. Hence, on comparing the Earth with Jupiter, whose diameter is about eleven times that of the Earth, it results that while his surface is 125 times as great, his content is 1390 times as great. Now even (supposing we assume like temperatures and like densities) if the only effect were that through a given area of surface eleven times more matter had to be cooled in the one case than in the other, there would be a vast difference between the times occupied in concentration. But, in virtue of a second factor, the difference would be much greater than that consequent on these geometrical relations. The escape of heat from a cooling mass is effected by conduction, or by convection, or by both. In a solid it is wholly by conduction; in a liquid or gas the chief part is played by convection—by circulating currents which continually transpose the hotter and cooler parts. Now in fluid spheroids—gaseous, or liquid, or mixed—increasing size entails an increasing obstacle to cooling, consequent on the increasing distances to be travelled by the circulating currents. Of course the relation is not a simple one: the velocities of the currents will be unlike. It is manifest, however, that in a sphere of eleven times the diameter, the transit of matter from centre to surface and back from surface to centre, will take a much longer time; even if its movement is unrestrained. But its movement is, in such cases as we are considering, greatly restrained. In a rotating spheroid there come into play retarding forces augmenting with the velocity of rotation. In such a spheroid the respective portions of matter (supposing them equal in their angular velocities round the axis, which they will tend more and more to become as the density increases), must vary in their absolute velocities according to their distances from the axis; and each portion cannot have its distance from the axis changed by circulating currents, which it must continually be, without loss or gain in its quantity of motion: through the medium of fluid friction, force must be expended, now in increasing its motion and now in retarding its motion. Hence, when the larger spheroid has also a higher velocity of rotation, the relative slowness of the circulating currents, and the consequent retardation of cooling, must be much greater than is implied by the extra distances to be travelled.
And now observe the correspondence between СКАЧАТЬ