Название: Essays: Scientific, Political, & Speculative (Vol. 1-3)
Автор: Spencer Herbert
Издательство: Bookwire
Жанр: Математика
isbn: 4064066389857
isbn:
Speaking generally (and of course differences of distance negative anything beyond average statements), the spiral nebulæ are smaller than the irregular nebulæ, and more resolvable; at the same time that they are not so small as the regular nebulæ, and not so resolvable. This is as, according to the hypothesis, it should be. The degree of condensation causing spiral movement, is a degree of condensation also implying masses of flocculi that are larger, and therefore more visible, than those existing in an earlier stage. Moreover, the forms of these spiral nebulæ are quite in harmony with the explanation given. The curves of luminous matter which they exhibit, are not such as would be described by discrete masses starting from a state of rest, and moving through a resisting medium to a common centre of gravity; but they are such as would be described by masses having their movements modified by the rotation of the medium.
In the centre of a spiral nebula is seen a mass both more luminous and more resolvable than the rest. Assume that, in process of time, all the spiral streaks of luminous matter which converge to this centre are drawn into it, as they must be; assume further, that the flocculi, or other discrete portions constituting these luminous streaks, aggregate into larger masses at the same time that they approach the central group, and that the masses forming this central group also aggregate into larger masses; and there will finally result a cluster of such larger masses, which will be resolvable with comparative ease. And, as the coalescence and concentration go on, the constituent masses will gradually become fewer, larger, brighter, and more densely collected around the common centre of gravity. See now how completely this inference agrees with observation. "The circular form is that which most commonly characterises resolvable nebulæ," writes Arago. Resolvable nebulæ, says Sir John Herschel, "are almost universally round or oval." Moreover, the centre of each group habitually displays a closer clustering of the constituent masses than the outer parts; and it is shown that, under the law of gravitation, which we now know extends to the stars, this distribution is not one of equilibrium, but implies progressing concentration. While, just as we inferred that, according to circumstances, the extent to which aggregation has been carried must vary; so we find that, in fact, there are regular nebulæ of all degrees of resolvability, from those consisting of innumerable minute masses, to those in which their numbers are smaller and the sizes greater, and to those in which there are a few large bodies worthy to be called stars.
On the one hand, then, we see that the notion, of late years uncritically received, that the nebulæ are extremely remote galaxies of stars like those which make up our own Milky Way, is totally irreconcilable with the facts—involves us in sundry absurdities. On the other hand, we see that the hypothesis of nebular condensation harmonizes with the most recent results of stellar astronomy: nay more—that it supplies us with an explanation of various appearances which in its absence would be incomprehensible.
Descending now to the Solar System, let us consider first a class of phenomena in some sort transitional—those offered by comets. In them, or at least in those most numerous of them which lie far out of the plane of the Solar System, and are not to be counted among its members, we have, still existing, a kind of matter like that out of which, according to the Nebular Hypothesis, the Solar System was evolved. Hence, for the explanation of them, we must go back to the time when the substances forming the sun and planets were yet unconcentrated.
When diffused matter, precipitated from a rarer medium, is aggregating, there are certain to be here and there produced small flocculi, which long remain detached; as do, for instance, minute shreds of cloud in a summer sky. In a concentrating nebula these will, in the majority of cases, eventually coalesce with the larger flocculi near to them. But it is tolerably evident that some of those formed at the outermost parts of the nebula, will not coalesce with the larger internal masses, but will slowly follow without overtaking them. The relatively greater resistance of the medium necessitates this. As a single feather falling to the ground will be rapidly left behind by a pillow-full of feathers; so, in their progress to the common centre of gravity, will the outermost shreds of vapour be left behind by the great masses of vapour internally situated. But we are not dependent merely on reasoning for this belief. Observation shows us that the less concentrated external parts of nebulæ, are left behind by the more concentrated internal parts. Examined through high powers, all nebulæ, even when they have assumed regular forms, are seen to be surrounded by luminous streaks, of which the directions show that they are being drawn into the general mass. Still higher powers bring into view still smaller, fainter, and more widely-dispersed streaks. And it cannot be doubted that the minute fragments which no telescopic aid makes visible, are yet more numerous and widely dispersed. Thus far, then, inference and observation are at one.
Granting that the great majority of these outlying portions of nebulous matter will be drawn into the central mass long before it reaches a definite form, the presumption is that some of the very small, far-removed portions will not be so; but that before they arrive near it, the central mass will have contracted into a comparatively moderate bulk. What now will be the characters of these late-arriving portions?
In the first place, they will have either extremely eccentric orbits or non-elliptic paths. Left behind at a time when they were moving towards the centre of gravity in slightly-deflected lines, and therefore having but very small angular velocities, they will approach the central mass in greatly elongated curves; and rushing round it, will go off again into space. That is, they will behave just as we see the majority of comets do; the orbits of which are either so eccentric as to be indistinguishable from parabolas, or else are not orbits at all, but are paths which are distinctly either parabolic or hyperbolic.
In the second place, they will come from all parts of the heavens. Our supposition implies that they were left behind at a time when the nebulous mass was of irregular shape, and had not acquired a definite rotation; and as the separation of them would not be from any one surface of the nebulous mass more than another, the conclusion must be that they will come to the central body from various directions in space. This, too, is exactly what happens. Unlike planets, whose orbits approximate to one plane, comets have orbits that show no relation to one another; but cut the plane of the ecliptic at all angles, and have axes inclined to it at all angles.
In the third place, these remotest flocculi of nebulous matter will, at the outset, be deflected from their direct courses to the common centre of gravity, not all on one side, but each on such side as its form, or its original proper motion, determines. And being left behind before the rotation of the nebula is set up, they will severally retain their different individual motions. Hence, following the concentrated mass, they will eventually go round it on all sides; and as often from right to left as from left to right. Here again the inference perfectly corresponds with the facts. While all the planets go round the sun from west to east, comets as often go round the sun from east to west as from west to east. Of 262 comets recorded since 1680, 130 are direct, and 132 are retrograde. This equality is what the law of probabilities would indicate.
Then, in the fourth place, the physical constitution of comets accords with the hypothesis.[15] The ability of nebulous matter to concentrate into a concrete form, depends on its mass. To bring its ultimate atoms into that proximity requisite for chemical union—requisite, that is, for the production of denser matter—their repulsion must be overcome. The only force antagonistic to their repulsion, is their mutual gravitation. That their mutual gravitation may generate a pressure and temperature of sufficient intensity, there must be an enormous accumulation of them; and even then the approximation can slowly go on only as fast as the evolved heat escapes. But where the quantity of atoms is small, and therefore the force of mutual gravitation small, СКАЧАТЬ