Название: Квантовый ум. Грань между физикой и психологией
Автор: Арнольд Минделл
Издательство: Баранов Дмитрий Сергеевич
Жанр: Философия
isbn: 978-5-93454-147-8
isbn:
Вспомните – математики (пока) так не думают. Они не приписывают мнимым числам какого-либо значения. По существу, Галилей призывал объявить вне закона «вторичные» качества материи, вроде материнской заботливости, любви и красоты, поскольку мы не можем их измерять (в общепринятой реальности).
Сегодня математики говорят, что мнимые числа – это чисто мысленные построения, не относящиеся ни к чему конкретному. Однако мы можем видеть, что действительные числа образуют поле осознания, описывающее ОР-аспекты событий, и что комплексное поле действительных и мнимых чисел символизирует поле осознания, которое описывает события ОР и НОР.
Таким образом, каждая отдельная точка на комплексной плоскости символизирует осознание, обладающее и реальными, и воображаемыми характеристиками, наподобие реальной березы, которая имеет столько-то метров высоты, а также кажется вам выглядящей по матерински. Каждый человек, объект или феномен, с которым мы взаимодействуем, каждое событие, которое мы замечаем, имеет реальные, общепринятые и воображаемые, необщепринятые аспекты. Математической аналогией этого может служить комплексное число, сочетающее в себе действительные и мнимые числа.
Независимо от того, спим мы или бодрствуем, вещи, которые мы замечаем, обладают характеристиками, относящимися и к ОР, и к НОР. Наше новое, дифференцированное поле осознания по-прежнему имеет замыкание, так как мы можем сновидеть, бодрствовать, складывать или усиливать, умножать, возводить в квадрат и делать со своим осознанием все, что нам угодно, и по-прежнему находиться в поле осознания, пока мы используем термины ОР для описания реальных и воображаемых переживаний. Мы можем сказать, что наше поле осознания – это ОР-описание Вселенной или, скорее, нашего отношения к Вселенной.
Иерархия чисел
Рассмотрим еще некоторые особенности комплексных чисел. Отметьте, например, что, хотя между комплексными и действительными числами существует сходство, между ними есть и различия. Помните – можно сказать, что 5 больше, чем 3, но нельзя сказать, что комплексное число, например, 5 + 5i больше или меньше, чем любое другое комплексное число, скажем 3 + 3i. Понятие величины относится к общепринятой реальности. Мы не можем измерить 5i или 3i!
В поле действительных чисел можно сравнивать величину и количество. Поле комплексных чисел с мнимыми числами – это дело воображения, неизмеримых субъективных качеств. Точно так же нельзя сказать, что дерево, которое напоминает вам о чувстве материнской заботы, оказывает на вас более или менее сильное СКАЧАТЬ