Название: Квантовый ум. Грань между физикой и психологией
Автор: Арнольд Минделл
Издательство: Баранов Дмитрий Сергеевич
Жанр: Философия
isbn: 978-5-93454-147-8
isbn:
… определенные чувственные восприятия разных людей соответствуют друг другу, в то время как для других чувственных восприятий подобное соответствие установить невозможно7.
Галилей жил в поворотный момент в истории западной цивилизации, во времена, когда происходило отделение количественных характеристик материи от чувств по отношению к ней. История западной цивилизации показывает, что наука шла в направлении, предсказанном Галилеем, и отвергала качества переживаний НОР. Тогда ученые решили, и считают так и поныне, что мнимые числа – это нечто вроде галилеевых вторичных качеств, они не имеют непосредственного физического смысла и не входят в сферу науки.
Это сопротивление, отчасти, было обусловлено тем, что в эпоху Возрождения росло разделение между материей и душой, между физической и нефизической сферами. Мнимые числа появились как раз тогда, когда физика и математика отчаянно пытались отделиться от религии и таинств алхимии, бывшей сочетанием химии и медитации, психологии и физики. Это разделение было чрезвычайно полезным, но теперь настало время для воссоединения. История мнимых чисел подсказывает, как будет происходить это воссоединение.
Математика мнимых чисел
История развития мнимых чисел весьма интересна, так как она следует по пути постоянных (и не вполне успешных) попыток избавиться от «вторичных качеств» природы. В XVII в. математики Джон Уоллис (1616-1703) и Готфрид Лейбниц (1646-1716), наряду с другими, обдумывали проблему квадратного корня отрицательных чисел. Они знали, что если взять квадрат с площадью, равной 1, то квадратный корень тоже будет равен 1.
Давайте еще раз подумаем о мнимых числах. Эти математики знали, что если нужно найти квадратный корень числа 4, это будет 2. Почему? Потому что, как я говорил ранее, если вы возводите число 2 в квадрат, то получается 4, то есть 2 х 2 = 4.
Что, умноженное само на себя, дало бы в результате отрицательное число? Ответа никто не знал. Поэтому математики пришли к выводу, что в их поле действительных чисел должно чего-то не хватать, так как в этом поле не было ничего такого, что давало бы им квадратные корни отрицательных чисел. Они знали, что им нужен новый вид числового поля, которое было бы расширенным вариантом поля действительных чисел, так как ничто в поле действительных чисел не вело к квадратному корню -1! Докажите это сами.
Квадратный корень из + 9 равен 3.
из +3 равен 1,732…
из +2 равен 1, 414.
из +1 равен 1,000.
из +0,5 равен 0,707.
Квадратный корень из +0,2 равен 0,447.
из +0,01 равен 0,100.
из -1 равен ???
Что такое квадратный корень -1??? Ничто в поле действительных СКАЧАТЬ