Название: Со спичками не шутят
Автор: Владимир Валентинович Трошин
Издательство: ЛитРес: Самиздат
Жанр: Прочая образовательная литература
isbn: 978-5-532-04770-9
isbn:
Теперь еще раз пройдемся по фигурам, увеличивая постепенно количество используемых спичек.
2-128. Из 4 спичек сложен крест, но не так как в задаче 2-6. Получить маленький квадратик в центре не получится. Хотя требование аналогичное: переместить одну спичку так, чтобы получился квадрат.
2-129. Из 5 спичек сложена маленькая стрела. Переложите 3 спички так, чтобы стрела поменяла направление на противоположное.
2-130. Из 6 спичек сложен правильный шестиугольник, у которого все углы тупые по 1200. Требуется переложить 4 спички так, чтобы получились треугольники с острыми углами.
2-131. Как переложить 2 спички так, чтобы из трех треугольников получилось два треугольника.
2-132. Из 8 спичек сложите 3 квадрата.
2-133. Переложите 2 спички так, чтобы получилось три квадрата одного размера.
2-134. Переложите 3 спички, чтобы вместо трех треугольников получить три четырехугольника одного размера.
2-135. Из 9 спичек составьте 7 треугольников, лежащих в одной плоскости. Ломать, разрезать и накладывать спички друг на друга не допускается. Есть два решения.
2-136. Из заданной фигуры получите два равносторонних треугольника, убрав 4, или 3, или 2 спички.
2-137. Из 10 спичек сложены три квадрата. Такая фигура уже была в задачах 2-27 и 2-28, но для нее есть еще задачи.
а) переложите 2 спички так, чтобы получился один большой и один маленький квадрат;
б) добавьте 2 спички так, чтобы получилось четыре одинаковых маленьких квадрата и еще один большой квадрат.
2-138. Переложите 3 спички так, чтобы получилось четыре равных четырехугольника.
2-139. Переложите 4 спички так, чтобы получилось четыре равных квадрата и один большой.
2-140. Из 12 спичек сложен крест, площадь которого равна 5 условным квадратам. Измените расположение спичек так, чтобы контур фигуры охватывал площадь равную только 4 условным квадратам.
2-141. Из 22 спичек требуется сложить прямоугольник наибольшей площади.
2-142. Можно ли из 36 спичек, не ломая их, сложить прямоугольный треугольник?
Урок 3. Алгебра
Суперакция от спичечной фабрики Дремлесдрев:
Каждая пятая спичка в коробке … зажигается!
Основные разделы математики, изучаемые в средней школе – это арифметика, геометрия и алгебра. Считается, что математика, помимо своего прикладного практического значения, развивает логическое мышление. Поэтому первыми в раздел алгебры мы включили несколько СКАЧАТЬ