The Hour Between Dog and Wolf: Risk-taking, Gut Feelings and the Biology of Boom and Bust. John Coates
Чтение книги онлайн.

Читать онлайн книгу The Hour Between Dog and Wolf: Risk-taking, Gut Feelings and the Biology of Boom and Bust - John Coates страница 10

СКАЧАТЬ as a dog’s, nor our eyes those of an owl. We cannot fly like a bird, nor can we swim underwater for as long as a seal. We get lost easily in the forest and end up walking in circles, while bats have radar and monarch butterflies have GPS. The gold medals for physical achievement in all events therefore go to members of the animal kingdom.

      But is this true? We need to look at the question from another angle. For what is truly extraordinary about humans is our ability to learn physical movements that do not in some sense come naturally, like dancing ballet, or playing the guitar, or performing gymnastics, or piloting a plane in an aerial dogfight, and to perfect them. Consider, for example, the skills displayed by a downhill skier who, in addition to descending a mountain at over 90 miles an hour, must carve turns, sometimes on sheer ice, at just the right time, a few milliseconds separating a winning performance from a deadly accident. This is a remarkable achievement for a species that took to the slopes only recently. No animal can do anything like this. Little wonder that Olympic events draw such large crowds – we are witnessing a physical perfection unequalled in the animal world.

      Remarkable feats of physical prowess can also be viewed in the concert hall. The fingers of a master pianist can disappear in a blur of movement when engaged in a challenging piece. All ten fingers work simultaneously, striking keys so rapidly that the eye cannot follow, yet each one can be hitting a key with varying force and frequency, some lingering to hold the note, others pulling back almost instantly, the whole performance modulated so as to communicate an emotional tone or conjure up a certain image. The physical feat by itself is extraordinary, but to think that this frenzied activity is so closely controlled that it can produce artistic meaning almost beggars belief. A piano concert is an extraordinary thing to watch and hear.

      Humans have always dreamed of breaking the bonds of terrestrial enslavement, and in sport, as in music and dance, we have come close to succeeding. Our incomparable prowess led Shakespeare to sing of our bodies, ‘In form and moving how express and admirable! In action how like an Angel!’ We have to wonder, how did we develop this physical genius? How did we learn to move like the gods? We did so because we grew a larger brain. And with that larger brain came ever more subtle physical movements, and ever more dense connections with the body.

      The brain region that experienced the most explosive growth in humans was, of course, the neo-cortex, home to choice and planning. The expanded neo-cortex led to the glories of higher thought; but it should be pointed out that the neo-cortex evolved together with an expanded cortico-spinal tract, the bundle of nerve fibres controlling the body’s musculature. And the larger neo-cortex and related nerves permitted a new and revolutionary type of movement – the voluntary control of muscles and the learning of new behaviour. The neo-cortex did indeed give us reading, writing, philosophy and mathematics, but first it gave us the ability to learn movements we had never performed before, like making tools, throwing a spear, or riding a horse.

      There was, however, another brain region which actually outgrew the neo-cortex and contributed to our physical prowess – the cerebellum (see fig. 3). The cerebellum occupies the lower part of the bulge that sticks out of the back of your head. It stores memories of how to do things, like ride a bike or play the flute, as well as programmes for rapid, automatic movements. But the cerebellum is an odd part of the brain, because it seems tacked on, almost like a small, separate brain. And in some sense it is, because the cerebellum acts like an operating system for the rest of the nervous system. It makes neural operations faster and more efficient, its contribution to the brain being much like that of an extra RAM chip added to a computer. The cerebellum plays this role most notably in the motor circuits of our nervous system, for it coordinates our physical actions, gives them precision and split-second timing. When the cerebellum is impaired, as it is when we are drunk, we can still move, but our actions become slow and uncoordinated. Intriguingly, the cerebellum also streamlines the performance of the neo-cortex itself. In fact, there is archaeological evidence indicating that modern humans may actually have had a smaller neo-cortex than the troll-like Neanderthals; but we had a larger cerebellum, and it provided us with what was effectively a more efficient operating system, and hence more brainpower.

      The expanded cerebellum led to our unparalleled artistic and sporting achievements. It contributed as well to the expertise we rely on when we entrust ourselves to the hands of a surgeon. Today, when our body and brain embrace, when we apply our formidable intelligence to physical action, we produce movements that are like nothing else ever seen on earth. This is a uniquely human form of excellence, and it deserves as much highbrow recognition as the works of philosophy, literature and science that occupy our pantheons.

      REVVING THE BRAIN

      Movement needs energy, and that means the brain has to organise not only the movement itself, but also the support operations for the muscles. What are these operations? It turns out that they are not all that different from those of an internal combustion engine. The brain must organise the finding and ingesting of fuel, in our case food; it must mix the fuel with oxygen in order to burn it; it must regulate the flow of blood in order to deliver this fuel and oxygen to cells throughout the body; it must cool this engine before combustion causes it to overheat; and it must vent the carbon dioxide waste once the fuel is burned.

      These simple facts of engineering mean that our thoughts are intimately tied to our physiology. Decisions are decisions to do something, so our thoughts come freighted with physical implications. They are accompanied by a rapid shift in our motor, metabolic and cardiovascular systems as these prepare for the movements that may ensue. Thinking about the options open to us at any given moment, scrolling through the possibilities, triggers a rapid series of somatic shifts. You can often see this in a person’s face as they think – eyes widening or squinting, pupils dilating, skin flushing or blanching, facial expressions as labile and fleeting as the weather. All thoughts involving choice of action involve a kaleidoscopic shift from one bodily state to another. Choice is a whole-body experience.

      We are forcefully reminded of this fact whenever we contemplate the taking of risks, especially in the financial markets. When reading of the outbreak of war, for example, or watching stock prices crash, the information provokes a strong bodily response: you inhale a quick lungful of air, your stomach knots and muscles tense, your face flushes, you feel the thump, thump of a heart gearing up for action, and a thin sheen of sweat creeps across your skin. We are all so familiar with these physical effects that we take them for granted and lose sight of their significance. For the fact that information, mere letters on a page or prices on a screen, can provoke a strong bodily reaction, can even, should it create uncertainty and stress, make us physically ill, tells us something important about the way we are built. We do not regard information as a computer would, dispassionately; we react to it physically. Our body and brain rev up and down together. Indeed, it is upon this very simple piece of physiology that much of the entertainment industry is built: would we read novels or go to the movies if they did not take our bodies on a rollercoaster ride?

      The point is this, and I cannot emphasise it enough: when faced by situations of novelty, uncertainty, opportunity or threat, you feel the things you do because of changes taking place in your body as it prepares for movement. Stress is a perfect illustration of this point. We tend to think that stress consists primarily of troubling thoughts, of being upset because something bad has happened or is going to happen to us, that it is a purely psychological state. But in fact the unpleasant and dangerous aspects of the stress response – the nervous stomach, the high blood pressure, the elevated glucose levels, the anxiety – should be understood as the gastro-intestinal, cardiovascular, metabolic and attentional preparation for impending physical effort. Even the gut feelings upon which traders and investors rely should be seen in this light: these are a lot more than mere hunches about what will happen next; they are changes taking place in the bodies of traders and investors as they prepare an appropriate physical response, be it fighting, running away, celebrating, or whimpering for relief. And because movement in times of emergency has to be lightning fast, these gut feelings are generated quickly, often faster than consciousness can keep up with, and are transmitted to parts of the brain of which we have only a dim and diffuse СКАЧАТЬ