Название: Краткий курс по статистике
Автор: Коллектив авторов
Издательство: РИПОЛ Классик
Жанр: Учебная литература
Серия: Скорая помощь студенту. Краткий курс
isbn: 978-5-409-00639-6
isbn:
где х1 – отдельные варианты.
Если имеется n коэффициентов роста, то формула среднего коэффициента:
Средняя геометрическая равна корню степени n из произведения коэффициентов роста, характеризующих отношение величины каждого последующего периода к величине предыдущего. Средняя квадратическая простая определяется путем извлечения квадратного корня из частного от деления суммы квадратов отдельных значений признака на их число:
Средняя квадратическая взвешенная:
2. Выделяют следующие основные виды средних величин:
☞ по наличию признака-веса: невзвешенная и взвешенная;
☞ охвату совокупности: групповая, общая;
☞ форме расчета: средняя арифметическая, гармоническая, геометрическая, квадратическая, кубическая и т. д. величины.
Данные средние выводятся из формулы степенной средней:
где xi – величины, для которых исчисляется средняя;
– средняя, где черта сверху свидетельствует о том, что имеет место осреднение индивидуальных значений;
n – частота (повторяемость индивидуальных значений признака).
При при k = – средняя гармоническая; при k = 0 – средняя геометрическая; при k = 2 – средняя квадратическая.
При k = 1 формула расчета степенной средней превращается в формулу расчета средней арифметической:
3. Выделяют следующие основные виды средней арифметической величины: средняя арифметическая невзвешенная, средняя арифметическая взвешенная.
Средняя арифметическая невзвешенная величина наиболее распространена; рассчитывается путем деления значений признака каждого элемента совокупности на число элементов совокупности:
Средняя арифметическая взвешенная величина рассчитывается, если имеются сведения о количестве или доле единиц совокупности каждым значением осредняемого признака:
Выделяют следующие основные свойства средней арифметической величины:
☞ сумма всех отклонений каждого значения признака от среднего арифметического значения равна нулю:
Если отклонения каждого из вариантов от средней величины суммировать, то получится ноль, что свойственно арифметическим невзвешенным и взвешенным средним значениям;
☞ произведение каждого значения признака на соответствующую ему частоту равно произведению средней величины на сумму частот:
Средняя СКАЧАТЬ