Апология математики (сборник статей). В. А. Успенский
Чтение книги онлайн.

Читать онлайн книгу Апология математики (сборник статей) - В. А. Успенский страница 17

СКАЧАТЬ теперь вопросом, может ли совокупность состоять из одного элемента. Математик ответит категорическим «да». Для гуманитария же минимально возможное количество элементов совокупности – это два. Но математики свободно оперируют и пустым множеством, вовсе не содержащим элементов. На занятиях по математике гуманитарии быстро усваивают это понятие (в частности, соглашаются, что пустое множество единственно: пустое множество крокодилов и пустое множество планет – это одно и то же множество).

      Для математика наименьшим числом, служащим ответом на вопрос «Сколько?», является ноль, для нематематика – один. Скажем, если в зоопарке всего лишь один слон, то число один будет естественным ответом на вопрос «Сколько слонов в этом зоопарке?». Хотя нематематик признает число ноль верным ответом на вопрос «Сколько в этом бассейне крокодилов?» и даже, возможно, сам даст подобный ответ, но всё же он, скорее, ответит: «Да нет тут никаких крокодилов!» И уж точно не задаст вопрос «Сколько?», не спросив предварительно: «Есть ли в этом бассейне крокодилы?» – и только после положительного ответа спросит, сколько их.

      Как в примере с точками, так и в примере с пустым множеством общение математика с гуманитарием оказывается более поучительным для первого, потому что заставляет его осознать: он, математик, даже в таких простых, казалось бы, вопросах, ушёл в мир абстрактных сущностей и тем самым удалился от общечеловеческого словоупотребления и образа мыслей.

      Поэтому математику негоже с высокомерием относиться к высказываниям гуманитария. Напротив, ему полезно осознать, что он приписывает абстракциям свойства, которые в жизни не встречаются. Заметим, что именно неограниченное, а потому незаконное перенесение на математические абстракции слов и смыслов, заимствованных из реальной жизни, и приводит в конце концов к математическим парадоксам, а именно к так называемым парадоксам теории множеств. Эти парадоксы появляются там, где с чрезвычайно высокими абстракциями начинают обращаться как с реальными предметами.

      Заметим, что ту же, по существу, природу – природу незаконного перенесения – имеют и парадоксы, которые окрестили логическими, хотя правильнее было бы называть их лингвистическими. Так мы и будем их называть. Как только что отмечалось, математические парадоксы возникают при попытке оперировать с математическими сущностями путём использования общеупотребительной лексики. Лингвистические парадоксы возникают, напротив, при попытке оперировать с общеупотребительными словами так, как если бы они выражали точные математические понятия. Общеупотребительные слова, как правило, имеют расплывчатый смысл, и попытка придания им точного смысла как раз и приводит к парадоксам. Рассмотрим для ясности три известных лингвистических парадокса.

      Парадокс кучи. Это один из самых известных и древних парадоксов. Ясно, что если из кучи песка удалить одну песчинку, то оставшееся всё ещё будет кучей. Но ведь, повторив данную СКАЧАТЬ