Название: Studies in the Theory of Descent, Volume I
Автор: Weismann August
Издательство: Public Domain
Жанр: Зарубежная классика
isbn:
isbn:
Experiments cannot further assist us here, since we cannot observe throughout long periods of time; but there are certain observations, which to me appear decisive. When, both in Germany and Italy, we see Polyommatus Phlæas appearing in two generations, of which both the German ones are alike, whilst in Italy the summer brood is black, we cannot ascribe this fact to the influence of a shorter period of development, because this period is the same both in Germany and Italy (two annual generations), so that it can only be attributed to the higher temperature of summer.
Many similar cases might be adduced, but the one given suffices for proof. I am therefore of opinion that it is not the duration of the period of development which is the cause of change in the formation of climatic varieties of butterflies, but only the temperature to which the species is exposed during its pupal existence. In what manner, then, are we to conceive that warmth acts on the marking and colouring of a butterfly? This is a question which could only be completely answered by gaining an insight into the mysterious chemico-physiological processes by which the butterfly is formed in the chrysalis; and indeed only by such a complete insight into the most minute details, which are far beyond our scrutiny, could we arrive at, or even approximate to, an explanation of the development of any living organism. Nevertheless an important step can be taken towards the solution of this problem, by establishing that the change does not depend essentially upon the action of warmth, but upon the organism itself, as appears from the nature of the change in one and the same species.
If we compare the Italian summer form of Polyommatus Phlæas with its winter form, we shall find that the difference between them consists only in the brilliant coppery red colour of the latter being largely suffused in the summer form with black scales. When entomologists speak of a “black dusting” of the upper side of the wings, this statement must not of course be understood literally; the number of scales is the same in both forms, but in the summer variety they are mostly black, a comparatively small number being red. We might thus be inclined to infer that, owing to the high temperature, the chemistry of the material undergoing transformation in Phlæas is changed in such a manner that less red and more black pigment is produced. But the case is not so simple, as will appear evident when we consider the fact that the summer forms have not originated suddenly, but only in the course of numerous generations; and when we further compare the two seasonal forms in other species. Thus in Pieris Napi the winter is distinguished from the summer form, among other characters, by the strong black dusting of the base of the wings. But we cannot conclude from this that in the present case more black pigment is produced in the winter than in the summer form, for in the latter, although the base of the wings is white, their tips and the black spots on the fore-wings are larger and of a deeper black than in the winter form. The quantity of black pigment produced does not distinguish between the two forms, but the mode of its distribution upon the wings.
Even in the case of species the summer form of which really possesses far more black than the winter form, as, for instance, Araschnia Levana, one type cannot be derived from the other simply by the expansion of the black spots present, since on the same place where in Levana a black band crosses the wings, Prorsa, which otherwise possesses much more black, has a white line. (See Figs. 1–9, Plate I.) The intermediate forms which have been artificially produced by the action of cold on the summer generation present a graduated series, according as reversion is more or less complete; a black spot first appearing in the middle of the white band of Prorsa, and then becoming enlarged until, finally, in the perfect Levana it unites with another black triangle proceeding from the front of the band, and thus becomes fused into a black bar. The white band of Prorsa and the black band of Levana by no means correspond in position; in Prorsa quite a new pattern appears, which does not originate by a simple colour replacement of the Levana marking. In the present case, therefore, there is no doubt that the new form is not produced simply because a certain pigment (black) is formed in larger quantities, but because its mode of distribution is at the same time different, white appearing in some instances where black formerly existed, whilst in other cases the black remains. Whoever compares Prorsa with Levana will not fail to be struck with the remarkable change of marking produced by the direct action of external conditions.
The numerous intermediate forms which can be produced artificially appear to me to furnish a further proof of the gradual character of the transformation. Ancestral intermediate forms can only occur where they have once had a former existence in the phyletic series. Reversion may only take place completely in some particular characters, whilst in others the new form remains constant – this is in fact the ordinary form of reversion, and in this manner a mixture of characters might appear which never existed as a phyletic stage; but particular characters could certainly never appear unless they were normal to the species at some stage of phyletic development. Were this possible it would directly contradict the idea of reversion, according to which new characters never make their appearance, but only such as have already existed. If, therefore, the ancestral forms of A. Levana (which we designate as Porima) present a great number of transitional varieties, this leads to the conclusion that the species must have gone through a long series of stages of phyletic development before the summer generation had completely changed into Prorsa. The view of the slow cumulative action of climatic influences already submitted, is thus confirmed.
If warmth is thus without doubt the agency which has gradually changed the colour and marking of many of our butterflies, it sufficiently appears from what has just been said concerning the nature of the change that the chief part in the transmutation is not to be attributed to the agency in question, but to the organism which is affected by it. Induced by warmth, there begins a change in the ultimate processes of the matter undergoing transformation, which increases from generation to generation, and which not only consists in the appearance of the colouring matter in one place instead of another, but also in the replacement of yellow, in one place by white and in another by black, or in the transformation of black into white on some portions of the wings, whilst in others black remains. When we consider with what extreme fidelity the most insignificant details of marking are, in constant species of butterflies, transmitted from generation to generation, a total change of the kind under consideration cannot but appear surprising, and we should not explain it by the nature of the agency (warmth), but only by the nature of the species affected. The latter cannot react upon the warmth in the same manner that a solution of an iron salt reacts upon potassium ferrocyanide or upon sulphuretted hydrogen; the colouring matter of the butterfly’s wing which was previously black does not become blue or yellow, nor does that which was white become changed into black, but a new marking is developed from the existing one – or, as I may express it in more general terms, the species takes another course of development; the complicated chemico-physical processes in the matter composing the pupa become gradually modified in such a manner that, as the final result, a new marking and colouring of the butterfly is produced.
Further facts can be adduced in support of the view that in these processes it is the constitution of the species, and not the external agency (warmth), which plays the chief part. The latter, as Darwin has strikingly expressed it, rather performs the function of the spark which ignites a combustible substance, whilst the character of the combustion depends upon the nature of the explosive material. Were this not the case, increased warmth would always change a given colour29 in the same manner in all butterflies, and would therefore always give rise to the production of the same colour. But this does not occur; Polyommatus Phlæas, for example, becoming black in the south, whilst the red-brown Vanessa Urticæ becomes black in high northern latitudes, and many other cases well known to entomologists might be adduced.30 It indeed appears that species of similar physical constitution, i.e., nearly allied species, under similar climatic influences, change in an analogous manner. A beautiful example of this is furnished by our Pierinæ. Most of the species display seasonal dimorphism; as, for instance, Pieris Brassicæ, Rapæ, Napi, Krueperi, and Daplidice, СКАЧАТЬ
30
[Mr. H. W. Bates mentions instances of local variation in colour affecting many distinct species in the same district in his memoir “On the Lepidoptera of the Amazon Valley;” Trans. Linn. Soc., vol. xxiii. Mr. A. R. Wallace also has brought together a large number of cases of variation in colour according to distribution, in his address to the biological section of the British Association at Glasgow in 1876. See “Brit. Assoc. Report,” 1876, pp. 100–110. For observations on the change of colour in British Lepidoptera according to distribution see papers by Mr. E. Birchall in “Ent. Mo. Mag.,” Nov., 1876, and by Dr. F. Buchanan White, “Ent. Mo. Mag.,” Dec., 1876. The colour variations in all these cases are of course not