Название: Studies in the Theory of Descent, Volume I
Автор: Weismann August
Издательство: Public Domain
Жанр: Зарубежная классика
isbn:
isbn:
One would expect that the second and third generations would revert more easily, and in a larger percentage, than the first, because this latter first acquired the new Marcellus form; but the present experiments furnish no safe conclusion on this point. Thus, of the first summer generation only seven out of sixty-seven pupæ hibernated, and these gave Telamonides; while of the second generation forty out of seventy-six, and of the third generation twenty-nine out of forty-two pupæ hibernated. But to establish safer conclusions, a still larger number of experiments is necessary. According to the experience thus far gained, one might perhaps still be inclined to imagine that, with seasonal dimorphism, external influences operating on the individual might directly compel it to assume one or the other form. I long held this view myself, but it is, nevertheless, untenable. That cold does not produce the one kind of marking, and warmth the other, follows from the before-mentioned facts, viz. that in Papilio Ajax every generation produces both forms; and, further, in the case of A. Levana I have frequently reared the fourth (hibernating) generation entirely in a warm room, and yet I have always obtained the winter form. Still, one might be inclined not to make the temperature directly responsible, but rather the retardation or acceleration of development produced through the action of temperature. I confess that I for a long time believed that in this action I had found the true cause of seasonal dimorphism. Both with A. Levana and P. Napi the difference between the duration of the pupal period in the winter and summer forms is very great, lasting as a rule, in the summer generation of A. Levana, from seven to twelve days, and in the winter generation about two hundred days. In this last species the pupal state can certainly be shortened by keeping them at an elevated temperature; but I have, nevertheless, only in one case obtained two or three butterflies at the end of December from caterpillars that had pupated in September, these generally emerging in the course of February and March, and are to be seen on the wing in warm weather during the latter month. The greatest reduction of the pupal period still leaves for this stage more than 100 days.
From this last observation it follows that it is not the duration of development which, in individual cases, determines the form of the butterfly, and which consequently decides whether the winter or summer form shall emerge, but that, on the contrary, the duration of the pupal stage is dependent on the tendency which the forthcoming butterfly had taken in the chrysalis state. This can be well understood when we consider that the winter form must have had a long, and the summer form a short pupal period, during innumerable generations. In the former the habit of slow development must have been just as well established as that of rapid development in the latter; and we cannot be at all surprised if we do not see this habit abandoned by the winter form when the opportunity presents itself. But that it may be occasionally abandoned the more proves that the duration of the pupal development less determines the butterfly form than does the temperature directly, in individual cases.
Thus, for instance, Edwards explicitly states that, whereas the two winter forms of P. Ajax, viz. the vars. Walshii and Telamonides, generally appear only after a pupal period of 150 to 270 days, yet individual cases occur in which the pupal stage is no longer than in the summer form, viz. fourteen days.23 A similar thing occurs with A. Levana, for, as already explained, not only may the development of the winter form be forced to a certain degree by artificial warmth, but the summer generation frequently produces reversion-forms without protraction of development. The intermediate reversion-form Porima was known long before it was thought possible that it could be produced artificially by the action of cold; it appears occasionally, although very rarely, at midsummer in the natural state.
If, then, my explanation of the phenomena is correct, the winter form is primary and the summer the secondary form, and those individuals which, naturally or artificially, assume the winter form must be considered as cases of atavism. The suggestion thus arises whether low temperature alone is competent to bring about this reversion, or whether other external influences are not also effective. Indeed, the latter appears to be the case. Besides purely internal causes, as previously pointed out in P. Ajax, warmth and mechanical motion appear to be able to bring about reversion.
That an unusually high temperature may cause reversion, I conclude from the following observation. In the summer of 1869 I bred the first summer brood of A. Levana; the caterpillars pupated during the second half of June, and from that time to their emergence, on 28th June–3rd July, great heat prevailed. Now, while the intermediate form Porima had hitherto been a great rarity, both in the free state and when bred, having never obtained it myself, for example, out of many hundreds of specimens, there were among the sixty or seventy butterflies that emerged from the above brood, some eight to ten examples of Porima. This is certainly not an exact experiment, but there seems to me a certain amount of probability that the high summer temperature in this case brought about reversion.
Neither for the second cause to which I have ascribed the power of producing reversion can I produce any absolute evidence, since the experimental solution of all these collateral questions would demand an endless amount of time. I am in possession of an observation, however, which makes it appear probable to me that continuous mechanical movement acts on the development of the pupæ in a similar manner to cold, that is, retarding them, and at the same time producing reversion. I had, in Freiburg, a large number of pupæ of the first summer brood of Pieris Napi, bred from eggs. I changed residence while many caterpillars were in course of transformation and travelled with the pupæ in this state seven hours by rail. Although this brood of P. Napi, under ordinary circumstances, always emerges in the summer, generally in July of the same year, as the summer form (var. Napeæ), yet out of these numerous pupæ I did not get a single butterfly during the year 1872. In winter I kept them in a warm room, and the first butterflies emerged in January, 1873, the remainder following in February, March, and April, and two females not until June. All appeared, however, as exquisite winter forms. The whole course of development was precisely as though cold had acted on the pupæ; and in fact, I could find no other cause for this quite exceptional deportment than the seven hours’ shaking to which the pupæ were exposed by the railway journey, immediately after or during their transformation.
It is obviously a fact of fundamental importance to the theory of seasonal dimorphism, that the summer form can be readily changed into the winter form, whilst the latter cannot be changed into the summer form. I have thus far only made experiments on this subject with A. Levana, but the same fact appears to me to obtain for P. Napi. I did not, however, operate upon the ordinary winter form of P. Napi, but chose for this experiment the variety Bryoniæ, well known to all entomologists. This is, to a certain extent, the potential winter form of P. Napi; the male (Fig. 14, Plate I.) exactly resembles the ordinary winter form in the most minute detail, but the female is distinguished from Napi by a sprinkling of greyish brown scales over the whole of the upper side of the wings (Fig. 15, Plate I.). This type, Bryoniæ, occurs in Polar regions as the only form of Napi, and is also found in the higher Alps, where it flies in secluded meadows as the only form, but in other localities, less isolated, mixed with the ordinary form of the species. In both regions Bryoniæ produces but one generation in the year, and must thus, according to my theory, be regarded as the parent-form of Pieris Napi.
If this hypothesis is correct – if the variety Bryoniæ is really the original form preserved from the glacial СКАЧАТЬ
22
[Eng. ed. Edwards has since proved experimentally that by the application of ice a large proportion of the pupæ do indeed give rise to the var.
23
Thus from eggs of