Название: Ритм Вселенной. Как из хаоса возникает порядок
Автор: Стивен Строгац
Издательство: Манн, Иванов и Фербер
Жанр: Физика
isbn: 978-5-00100-388-5
isbn:
Через несколько часов после восхода солнца я позвонил своему сотруднику Ренни Миролло, чтобы соотщить ему приятную новость. Я начал описывать свои соображения относительно «осцилляторной жидкости», но он быстро прервал меня: «К чему вся эта софистика?» Будучи «чистым» математиком, он никогда не изучал механику жидкостей и доверял лишь уравнениям, не прибегая к помощи воображения. Мои вычисления казались ему весьма сомнительными. Но я был уверен в своей правоте. Несколько позже в тот же день я вернулся к себе в офис и убедился в том, что предсказанные мною скорости нарастания идеально совпадали с результатами компьютерного моделирования. Ренни быстро заключил мир с «осцилляторной жидкостью».
Вместе с Ренни мы решили вопрос устойчивости некогерентного состояния по другую сторону порога, где интервал частот достаточно большой, аналогично температурам выше точки замерзания. Мы ожидали, что некогерентность должна теперь стать устойчивой. Но вместо этого уравнения указывали на то, что она «нейтрально устойчива» – очень редкий, пограничный случай, когда переходные возмущения ни нарастают, ни затухают.
Вообразите, например, маленький шарик, который находится на дне чашки с полусферической формой внутренней поверхности. Если такой шарик переместить в любую другую точку на внутренней поверхности чашки, он скатится обратно на дно, которое является точкой устойчивого равновесия. Теперь допустим, что форму внутренней поверхности чашки можно регулировать: с помощью некоего рычажка вы можете постепенно делать ее более плоской (то есть придавать ей форму с меньшей кривизной). Дно по-прежнему остается устойчивым, но все же менее, чем прежде: шарик, перемещенный в любую другую точку на внутренней поверхности чашки, медленнее скатывается в точку устойчивого равновесия. По мере того как вы все больше поворачиваете рычажок регулирования кривизны, форма внутренней поверхности чашки становится все более плоской. Когда рычажок регулирования достигнет некого критического деления, внутренняя поверхность чашки станет совершенно плоской и горизонтальной, а в результате дальнейшего изменения положения рычажка она станет похожа на выпуклую контактную линзу (слабо выраженная куполообразная форма), превратившись в конечном счете в выпуклую полусферу. В ходе такого постепенного превращения вогнутое дно чашки превратилось в куполообразную выпуклость. Теперь, если шарик слегка подтолкнуть, он скатится на край дна: состояние равновесия СКАЧАТЬ