Название: Магия математики: Как найти x и зачем это нужно
Автор: Артур Бенджамин
Издательство: Альпина Диджитал
Жанр: Математика
isbn: 978-5-9614-4466-7
isbn:
$8,95 меньше $9 лишь на 5 центов, поэтому легче сначала прибавить к $23,58 именно $9, а потом вычесть $0,05. И смотрите, как все сразу упрощается:
Вычитание в уме
Главный прием при вычитании в уме – вычитать больше, чем нужно. Если вам нужно вычесть 9, гораздо легче вычесть 10, а потом прибавить лишнюю единицу. Например,
Соответственно, если вам нужно вычесть 39, вычтите 40 и прибавьте 1.
С двух- или трехзначными (как, впрочем, и с бóльшими) числами самая правильная стратегия – дополняющие числа (потом вы еще скажете мне за это спасибо). Дополняющее число – это разность между тем числом, которым вы оперируете, и ближайшим к нему бóльшим круглым. В принципе, то же самое, что и в нашем примере с 9: в этом случае дополняющим числом будет 1, а ближайшим круглым – 10 (как и для всех однозначных чисел). Для двузначных чисел это будет 100. Посмотрите на пары чисел, которые мы складываем, чтобы получить 100. Что вы видите?
Дополняющее число для 87 – 13, для 75 – 25 и так далее. И наоборот: дополняющее число для 13 – 87, а для 25 – 75. Решая каждую такую задачу слева направо, вы легко заметите, что во всех примерах (кроме последнего) сумма крайних левых чисел будет равна 9, а крайних правых – 10. Закономерность нарушается только тогда, когда числа заканчиваются на 0 (как в последнем примере): дополняющим числом для 80 будет 20.
Применим эту стратегию к вычислению 1234 – 567. Даже вычитание на бумаге в этом случае – не самое простое занятие, что уж говорить про подсчет в уме. Но с дополняющими числами этот зубодробительный пример вычитания превращается в простейший пример сложения! Вместо того чтобы вычитать 567, вычтем 600. Это гораздо проще, особенно если считать слева направо: 1234 – 600 = 634. Но ведь это не тот ответ, который нам нужен? Насколько не тот? Ровно на разность между 567 и 600 – такую же, как и между 67 и 100, то есть на 33. Значит,
Правда, очень просто? Потому что при сложении ничего не нужно держать «в уме». И так просто дело будет обстоять почти всегда, когда вы используете дополняющие числа при вычитании, пусть и трехзначные:
В большинстве случаев (когда числа не заканчиваются на 0) сумма «основной» и «дополнительной» цифр равна 9, за исключением последней пары, равной 10. Например, для 789: 7 + 2 = 9; 8 + 1 = 9; 9 + 1 = 10. Следовательно, дополнительное число, считая слева направо, вычисляется так: 9 – 7 = 2, 9 – 8 = 1, 10 – 9 = 1. Метод дополнительных чисел пригодится при подсчете сдачи. Мои любимые бутерброды в соседнем магазине, например, стоят $6,76. Как узнать, сколько я получу, если расплачусь банкнотой в $10? Да как раз с помощью дополняющего до 1000 числа для 676 – 324. Значит, сдача будет $3,24.
Каждый раз, покупая бутерброд, я волей-неволей замечаю, что и его цена, и возвращаемая мне сдача представляют собой квадраты чисел (26² = 676, а 18² = 324). Вопрос на засыпку: есть еще одна пара квадратов чисел, которые дают в сумме 1000. Сможете их найти?
Умножение СКАЧАТЬ