AI для всех?. Dmitriy Inspirer
Чтение книги онлайн.

Читать онлайн книгу AI для всех? - Dmitriy Inspirer страница 6

Название: AI для всех?

Автор: Dmitriy Inspirer

Издательство: Издательские решения

Жанр:

Серия:

isbn: 9785006500532

isbn:

СКАЧАТЬ алгоритмов и моделей, способных извлекать знания из данных. Вместо того чтобы вручную программировать систему для выполнения конкретных задач, в машинном обучении используется подход, при котором система «учится» на примерах и самостоятельно находит закономерности, чтобы принимать решения или делать прогнозы.

      Пример: Вместо того чтобы вручную создавать правила для распознавания лиц на изображениях, в машинном обучении используется алгоритм, который обучается на множестве размеченных фотографий (с метками «это лицо», «это не лицо»). После этого модель может распознавать лица на новых изображениях без необходимости в явном программировании каждой особенности.

      2. Как работает машинное обучение?

      Основная идея машинного обучения заключается в том, чтобы научить компьютер находить закономерности в данных и делать предсказания или принимать решения на основе этих закономерностей. Этот процесс включает в себя несколько этапов:

      – Сбор данных: Для обучения модели необходимы данные. Это могут быть текстовые данные, изображения, видео, временные ряды или другие типы информации. Важно, чтобы данные были качественными и представляли собой разнообразные примеры, с которыми модель будет сталкиваться в реальной жизни.

      – Предобработка данных: Прежде чем обучить модель, данные часто нужно привести в формат, который будет удобен для обработки. Это может включать в себя очистку данных (удаление шума), нормализацию, преобразование категориальных переменных в числовые и другие шаги.

      – Выбор модели: Существует множество типов моделей машинного обучения, и выбор подходящей зависит от задачи. Например, для классификации изображений часто используют сверточные нейронные сети (CNN), а для анализа временных рядов – рекуррентные нейронные сети (RNN).

      – Обучение модели: На этом этапе модель «учится» из данных. В зависимости от типа машинного обучения, алгоритм будет использовать разметку данных (для обучения с учителем) или искать скрытые закономерности (для обучения без учителя).

      – Оценка модели: После обучения модель необходимо оценить, чтобы понять, насколько она хорошо справляется с поставленной задачей. Для этого используются различные метрики, такие как точность, полнота, F1-скор, ошибка, и другие. Оценка модели помогает определить, насколько она обобщается на новых данных, и дает представление о том, что нужно улучшить.

      – Тюнинг гиперпараметров: Чтобы улучшить производительность модели, можно настроить гиперпараметры – параметры, которые не изменяются в процессе обучения, но могут существенно повлиять на результат. Это может включать выбор числа слоев в нейронной сети, скорость обучения и другие параметры.

      3. Роль машинного обучения в развитии AI

      Машинное обучение является ключевым элементом, который сделал возможным настоящий прогресс в области искусственного интеллекта. Ранее AI ограничивался СКАЧАТЬ