Название: AI для всех?
Автор: Dmitriy Inspirer
Издательство: Издательские решения
isbn: 9785006500532
isbn:
2. Модели машинного обучения
Модели – это алгоритмы, которые обучаются на данных и делают прогнозы или принимают решения. Каждая модель имеет свои особенности, которые делают её более подходящей для определенных типов задач.
a) Линейные модели
Линейные модели – это простые модели, которые пытаются провести прямую линию (или гиперплоскость в многомерном пространстве), которая разделяет данные. Это позволяет сделать прогнозы на основе линейных зависимостей между входными и выходными данными.
Пример: Линейная регрессия, где модель пытается предсказать значение (например, стоимость дома) на основе линейной комбинации факторов (например, площади дома, количества комнат).
b) Деревья решений
Дерево решений – это структура, которая принимает решения на основе нескольких вопросов, каждый из которых делит данные на два или больше вариантов. Деревья решений просты для понимания и часто используются в задачах классификации.
Пример: При классификации клиентов банка на тех, кто вероятно погасит кредит, и тех, кто не погасит, модель может задавать вопросы типа: «Есть ли у клиента стабильный доход?», «Есть ли у клиента задолженности?», и так далее, пока не достигнет заключения.
c) Нейронные сети
Нейронные сети – это сложные модели, состоящие из множества связанных между собой «нейронов», которые обрабатывают данные. Они способны выявлять сложные зависимости в данных, что делает их подходящими для задач, таких как распознавание изображений или обработка естественного языка.
Пример: Система распознавания лиц в социальной сети использует нейронные сети для определения, кто изображен на фотографии, на основе обучения на огромном количестве размеченных данных.
d) Случайные леса и бустинг
Случайный лес (Random Forest) – это ансамблевый метод, который использует несколько деревьев решений для улучшения качества предсказания. В отличие от одиночных деревьев, случайный лес объединяет предсказания множества деревьев, что делает модель более устойчивой к ошибкам.
Бустинг – это метод, при котором несколько слабых моделей (например, слабых деревьев решений) комбинируются в одну сильную модель, что позволяет значительно повысить точность предсказаний.
3. Оценка и улучшение моделей
После того как модель обучена, важно оценить её точность и способность делать прогнозы на новых, невиданных данных. Для этого существуют различные метрики, такие как точность, полнота, F1-скор, площадь под кривой ROC (AUC-ROC) и другие.
Процесс улучшения модели включает в себя:
– Тюнинг гиперпараметров: настройка параметров модели (например, глубины дерева решений или числа слоев в нейронной сети), чтобы достичь лучшей производительности.
– Кросс-валидация: процесс разделения данных на несколько подмножеств, СКАЧАТЬ