AI для всех?. Dmitriy Inspirer
Чтение книги онлайн.

Читать онлайн книгу AI для всех? - Dmitriy Inspirer страница 10

Название: AI для всех?

Автор: Dmitriy Inspirer

Издательство: Издательские решения

Жанр:

Серия:

isbn: 9785006500532

isbn:

СКАЧАТЬ результатом и реальным значением.

      – Обратное распространение ошибки (backpropagation): На основе ошибки, полученной на выходе, нейросеть корректирует свои веса. Это происходит с помощью алгоритма обратного распространения ошибки, который определяет, какие нейроны и связи нужно настроить, чтобы уменьшить ошибку. Веса представляют собой параметры, которые связывают нейроны между собой и регулируют силу их влияния на результат.

      – Обновление весов: После того как ошибка была оценена, веса обновляются с помощью метода градиентного спуска. Этот метод помогает минимизировать ошибку, путем итеративного изменения весов в направлении, где ошибка будет уменьшаться. Процесс продолжается, пока ошибка не станет достаточно малой.

      Эти шаги повторяются несколько тысяч, а иногда и миллионов раз, пока нейросеть не обучится выполнять задачу с требуемой точностью.

      4. Важность активационных функций

      Одним из ключевых компонентов нейросети являются активационные функции. Они определяют, как данные проходят через нейроны и помогают сети решать сложные задачи, делая возможными нелинейные преобразования. Активационные функции добавляют гибкость модели, позволяя ей обрабатывать и выявлять более сложные зависимости в данных.

      Некоторые популярные активационные функции:

      – Сигмоида: Преобразует входное значение в диапазон от 0 до 1. Это полезно, например, для задач классификации с двумя классами (например, «да» или «нет»).

      – ReLU (Rectified Linear Unit): Это одна из самых популярных функций активации, которая устанавливает все отрицательные значения на 0, а положительные оставляет без изменений. Она ускоряет обучение и делает сеть более устойчивой к проблемам, таким как исчезающий градиент.

      – Тангенс гиперболический (tanh): Преобразует входное значение в диапазон от -1 до 1, что может быть полезно для задач, где данные имеют как положительные, так и отрицательные значения.

      – Softmax: Часто используется в многоклассовой классификации, преобразуя выходные значения нейронов в вероятности, которые суммируются до 1.

      5. Преимущества нейросетей

      Нейросети обладают рядом преимуществ, которые делают их мощными инструментами для решения сложных задач:

      – Автоматическое извлечение признаков: Нейросети способны самостоятельно выявлять важные признаки из необработанных данных. Это означает, что они могут обучаться без необходимости вручную выделять признаки, что делает их эффективными в работе с большими объемами данных.

      – Гибкость: Нейросети могут решать самые разные задачи, от распознавания изображений до обработки текста и даже создания музыки. Благодаря множеству типов архитектур нейросетей, таких как сверточные, рекуррентные и трансформеры, они могут применяться в самых различных сферах.

      – Обработка больших данных: СКАЧАТЬ