Название: История античной науки. Открытия великих ученых и мыслителей древности
Автор: Джордж Сартон
Издательство: Центрполиграф
isbn: 978-5-9524-5737-9
isbn:
23 171/2 12 61/2 1, всего 60.
Столько раз, сколько необходимо умножить 60, чтобы получилось 100, на столько же необходимо умножить эти доли.
1 60
2/3 40
Всего 12/3 на 60 дает 100.
Умножить на 12/3:
Задачи 41–60 связаны с вычислением площади и объема, а задачи 61–84 носят смешанный характер. Площадь треугольника вычисляют умножением его основания на половину стороны; это верно лишь для остроугольных треугольников. Объем цилиндрического амбара диаметра d и высоты h вычислялся по формуле (d — 1/9d)2h. Это довольно близко к площади круга – 0,7902 d2 0,7854d2, как если бы π равнялось не 3,14, а 3,16.
Нет оснований полагать, что египтяне знали теорему Пифагора, если не считать одного косвенного указания на это в Берлинском папирусе. Возможно, египтяне получили нужные ответы эмпирическим путем, но вопрос остается неясным. То, что приобрести такие знания было относительно легко и они преодолевали и более серьезные трудности, – несерьезный довод. В истории науки обычное явление, когда задачи не всегда решались (одним народом либо всеми коллективно) по мере возрастания сложности.
Ссылка Демокрита Абдерского (V в. до н. э.) на мудрых египетских harpedonaptai, то есть землемеров, которые измеряли расстояния веревкой с узелками, часто трактуется неверно. По словам Демокрита, ни один современник, в том числе египетские землемеры, не превзошел его в построении фигур из линий и в расчете их площади. Комментаторы без дальнейших доказательств пришли к выводу, что землемеры могли вычерчивать нужные углы с помощью веревки с узелками. Скорее всего, функция веревки с узелками была астрономической, а не математической. «Растягивание шнура» было одной из первых церемоний при закладке храма. Шнур или веревку необходимо было растягивать по меридиану, чтобы правильно сориентировать храм. Вполне возможно, что «растягиватели веревок» умели также строить перпендикуляр к меридиану; возможно, они делали это с помощью веревки, поделенной на 3, 4, 5 частей. Впрочем, это лишь догадки, как и все гипотезы, по которым открытие теоремы Пифагора приписывают древним индусам или китайцам.
В Московском математическом папирусе (папирусе Голенищева) всего 25 задач, но одна из них захватывает дух. Похоже, она доказывает, что древние египтяне умели вычислять объем усеченной пирамиды, и решение у них такое же, как у нас, представленное формулой
V = (h/3) (a2 + ab + b2),
где h — высота усеченной пирамиды, а и b – стороны квадратных оснований.
Это решение можно назвать шедевром древнеегипетской геометрии. Оно свидетельствует о раннем развитии науки в Древнем Египте и о гениальности египтян. Скорее всего, решение было найдено ими уже в XIX в. до н. э., если не раньше, и они так и не превзошли его, хотя продолжали работать на протяжении еще трех тысячелетий.
Техника и технология
Самым главным техническим достижением с точки зрения его культурных последствий стало изобретение папируса, которое обсуждалось выше. Скажем несколько СКАЧАТЬ