История античной науки. Открытия великих ученых и мыслителей древности. Джордж Сартон
Чтение книги онлайн.

Читать онлайн книгу История античной науки. Открытия великих ученых и мыслителей древности - Джордж Сартон страница 24

СКАЧАТЬ строительство, предпринятое в эпоху пирамид, требовало деятельности клерков, которые сохраняли и увековечивали традиции в виде методов и рецептов, задач, расчетов и таблиц – а также того, что соответствовало нашим копиям чертежей. Можно предположить, что такие традиции, постепенно обогащавшиеся, сохранялись до конца расцвета Древнего Египта. Так, сооружение множества обелисков при XVIII и XIX династиях предполагает, что архитекторы передавали результаты многочисленных экспериментов, полученных методом проб и ошибок, своим ученикам; данные также передавались от двора одного фараона к другому. Вероятно, сохранению научных традиций очень способствовали жрецы, самые образованные люди для своего времени. Так, судя по вступительным словам на папирусе Ринда, его написал писец по имени Ахмес.

      Судя по всему, Ахмес сознавал огромную важность своей задачи. Во вступительной части папируса Ахмеса объясняется, что он посвящен «совершенному и основательному исследованию всех вещей, пониманию их сущности, познанию их тайн». Перед нами практически научный трактат, то есть систематический отчет о доступных знаниях в его области. Конечно, древний учебник ни в коей мере не является таким же систематическим, как пособия, написанные в наши дни, но в нем прослеживается вполне внушительная методика. Подумать только! Некий Ахмес, живший почти за столько же веков до Христа, сколько живем мы после Христа, приступает к решению основных задач арифметики и геометрии в том виде, в каком они представлялись его современникам!

      Прежде чем описывать содержание папируса Ринда, необходимо объяснить, как египтяне представляли себе дроби. По какой-то странной причине для них были приемлемы лишь аликвотные дроби, то есть дроби вида 1/n имеющие числитель, равный 1, и знаменатель, выраженный натуральным числом. В порядке исключения использовались две «вспомогательные» дроби, 2/3 и 3/4. Вторая из них, «три части», то есть 3/4, использовалась редко, зато первая – «две части», то есть 2/3, очень распространена. Для дроби 2/3 существовал отдельный символ, который часто встречается в математических текстах.

      Папирус Ринда начинается с таблицы разложения дробей типа 2/(2π + 1), в которой n — натуральное число от 2 до 50:

      То, что таблица помещена в начало трактата, типично для его полутеоретического, полупрактического характера. Писец или его неизвестный предшественник экспериментальным путем пришел к некоторому уровню абстракции и счел целесообразным представить его.

      Затем следуют 40 арифметических задач (см. задачу 4 на рис. 9), которые связаны с делением 1, 2…, 9 на 10, умножением дробей, задач на дополнение вычитаемого до уменьшаемого (дополнить 2/3 1/30 до 1; правильный ответ – 1/5 1/10), задачи на величины (сумма некоторой величины и 1/7 от нее равняется 19; найти величину. Ответ – 16 1/2 1/8), деление на дробь, деление на меру хекат, деление хлебов в арифметической прогрессии (см. пример ниже). Эти задачи ведут к СКАЧАТЬ